Non-equilibrium thermal models of lithium batteries

被引:0
|
作者
Yang, Xiaoyu [1 ]
Li, Weiyu [2 ]
Um, Kimoon [3 ]
Tartakovsky, Daniel M. [1 ]
机构
[1] Stanford Univ, Dept Energy Sci & Engn, 537 Panama Mall, Stanford, CA 94305 USA
[2] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA
[3] Hyundai Motor Grp, Res & Dev Div, Uiwang 16082, Gyeonggi Do, South Korea
关键词
Lithium batteries; Large thermal gradient; High C-rates; Large particles; Non-equilibrium thermal model; ION BATTERY; HEAT-GENERATION; TEMPERATURE; CONDUCTIVITY; CELL; OPTIMIZATION; SIMULATION;
D O I
10.1016/j.jpowsour.2024.235428
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Temperature fluctuations impact battery performance, safety, and health. Industry-standard cell-level models of these phenomena ignore thermal gradients within the electrodes' active material, i.e., assume the latter to be in "thermal equilibrium". We present a "non-equilibrium"thermal model that explicitly accounts for spatial variability of temperature with the active material (and the carbon-binder domain). We investigate the conditions, expressed in terms of the heat-generation rate and the thermal properties of a cell's liquid (electrolyte) and solid (active material and CBD) phases, under which the thermal equilibrium assumption breaks down and our model should be used instead. The differences between these two thermal models are investigated further by coupling them with an industry-standard electrochemical model. The resulting thermal-electrochemical model demonstrates the importance of thermal gradients within the active material at high C-rates (discharge current densities) and for large grain sizes. Under these conditions, the equilibrium assumption underestimates internal temperature by as much as 50%. These two thermal models are then applied to a commercial NMC battery with multiple units. Our non-equilibrium model predicts the battery surface temperature that is in good agreement with measurements, while the equilibrium model underestimates the observed temperature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Equilibrium and Non-equilibrium Ising Models by Means of PCA
    Lancia, Carlo
    Scoppola, Benedetto
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (04) : 641 - 653
  • [22] Thermal Convection in a Partially Porous Rotating Chamber Using Local Thermal Non-Equilibrium Models
    Stepan A. Mikhailenko
    Mikhail A. Sheremet
    Transport in Porous Media, 2022, 143 : 619 - 637
  • [23] Thermal Convection in a Partially Porous Rotating Chamber Using Local Thermal Non-Equilibrium Models
    Mikhailenko, Stepan A.
    Sheremet, Mikhail A.
    TRANSPORT IN POROUS MEDIA, 2022, 143 (03) : 619 - 637
  • [24] Thermal field theory in non-equilibrium states
    Henning, PA
    Nakamura, K
    Yamanaka, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14): : 1599 - 1614
  • [25] THERMOPHYSICAL PROPERTIES OF THERMAL EQUILIBRIUM AND NON-EQUILIBRIUM NITROGEN PLASMAS
    Wang, W. Z.
    Yan, J. D.
    Rong, M. Z.
    Murphy, A. B.
    Fang, M. T. C.
    XIXTH SYMPOSIUM ON PHYSICS OF SWITCHING ARC, 2011, : 339 - +
  • [26] Non-equilibrium statistical approach to friction models
    Ichinose, Shoichi
    TRIBOLOGY INTERNATIONAL, 2016, 93 : 446 - 450
  • [27] Phase Transitions in Equilibrium and Non-Equilibrium Models on Some Topologies
    De Sousa Lima, Francisco W.
    ENTROPY, 2016, 18 (03)
  • [28] Decaying compressible turbulence with thermal non-equilibrium
    Khurshid, Sualeh
    Donzis, Diego A.
    PHYSICS OF FLUIDS, 2019, 31 (01)
  • [29] Non-equilibrium effects on thermal desorption spectra
    Meng, B
    Weinberg, WH
    SURFACE SCIENCE, 1997, 374 (1-3) : 443 - 453
  • [30] Non-equilibrium fast thermal response of polymers
    Minakov, Alexander A.
    Schick, Christoph
    THERMOCHIMICA ACTA, 2018, 660 : 82 - 93