A Dual-Branch Fusion Network for Surgical Instrument Segmentation

被引:0
|
作者
Yang, Lei [1 ]
Zhai, Chenxu [1 ]
Wang, Hongyong [1 ]
Liu, Yanhong [1 ]
Bian, Guibin [2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Transformers; Instruments; Convolutional neural networks; Accuracy; Biomedical imaging; Deep network architecture; enhanced convolution; transformer; surgical instrument segmentation; FEATURE AGGREGATION; IMAGE;
D O I
10.1109/TMRB.2024.3464748
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Surgical robots have become integral to contemporary surgical procedures, with the precise segmentation of surgical instruments constituting a crucial prerequisite for ensuring their stable functionality. However, numerous factors continue to influence segmentation outcomes, including intricate surgical environments, varying viewpoints, diminished contrast between surgical instruments and surroundings, divergent sizes and shapes of instruments, and imbalanced categories. In this paper, a novel dual-branch fusion network, designated DBF-Net, is presented, which integrates both convolutional neural network (CNN) and Transformer architectures to facilitate automatic segmentation of surgical instruments. For addressing the deficiencies in feature extraction capacity in CNNs or Transformer architectures, a dual-path encoding unit is introduced to proficiently represent local detail features and global context. Meanwhile, to enhance the fusion of features extracted from the dual paths, a CNN-Transformer fusion (CTF) module is proposed, to efficiently merge features from the CNN and Transformer structures, contributing to the effective representation of both local detail features and global contextual features. Further refinement is pursued through an multi-scale feature aggregation (MFAG) module and a local feature enhancement (LFE) module, to refine local contextual features at each layer. In addition, an attention-guided enhancement (AGE) module is incorporated for feature refinement of local feature maps. Finally, an multi-scale global feature representation (MGFR) module is introduced, facilitating the extraction and aggregation of multi-scale features, and a progressive fusion module (PFM) culminates in the aggregation of full-scale features from the decoder. Experimental results underscore the superior segmentation performance of proposed network compared to other state-of-the-art (SOTA) segmentation models for surgical instruments, which have well validated the efficacy of proposed network architecture in advancing the field of surgical instrument segmentation.
引用
收藏
页码:1542 / 1554
页数:13
相关论文
共 50 条
  • [31] Shuff-BiseNet: a dual-branch segmentation network for pavement cracks
    Wang, Haiqun
    Wang, Bingnan
    Zhao, Tao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3309 - 3320
  • [32] Food image segmentation based on deep and shallow dual-branch network
    Xiao, Zhiyong
    Li, Yang
    Deng, Zhaohong
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [33] Dual-Branch Multitask Fusion Network for Offline Chinese Writer Identification
    Wang, Haixia
    Mao, Yingyu
    Miao, Qingran
    Xiao, Qun
    Zhang, Yilong
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (02)
  • [34] A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation
    Zhang, Chong
    Wang, Lingtong
    Wei, Guohui
    Kong, Zhiyong
    Qiu, Min
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [35] A dual-branch fracture attribute fusion network based on prior knowledge
    Jiang, Wenbin
    Zhang, Dongmei
    Hui, Gang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [36] Dual-Branch Multimodal Fusion Network for Driver Facial Emotion Recognition
    Wang, Le
    Chang, Yuchen
    Wang, Kaiping
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [37] DBFAM: A dual-branch network with efficient feature fusion and attention-enhanced gating for medical image segmentation
    Ren, Benzhe
    Zheng, Yuhui
    Zheng, Zhaohui
    Ding, Jin
    Wang, Tao
    Journal of Visual Communication and Image Representation, 2025, 109
  • [38] Graph Neural Network Enhanced Dual-Branch Network for lesion segmentation in ultrasound images
    Wang, Yaqi
    Jiang, Cunang
    Luo, Shixin
    Dai, Yu
    Zhang, Jiangxun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [39] Branch Aggregation Attention Network for Robotic Surgical Instrument Segmentation
    Shen, Wenting
    Wang, Yaonan
    Liu, Min
    Wang, Jiazheng
    Ding, Renjie
    Zhang, Zhe
    Meijering, Erik
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (11) : 3408 - 3419
  • [40] Compact interactive dual-branch network for real-time semantic segmentation
    Dong, Yongsheng
    Yang, Haotian
    Pei, Yuanhua
    Shen, Longchao
    Zheng, Lintao
    Li, Peiluan
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6177 - 6190