共 36 条
- [1] Foucart S., Rauhut H., A Mathematical Introduction to Compressive Sensing, (2013)
- [2] Wainwright M.J., High-Dimensional Statistics: A Non-Asymptotic Viewpoint, 48, (2019)
- [3] Tropp J.A., Just relax: Convex programming methods for identifying sparse signals in noise, IEEE Trans. Inf. Theory, 52, 3, pp. 1030-1051, (2006)
- [4] Wainwright M., Sharp thresholds for high-dimensional and noisy sparsity recovery using l<sub>1</sub>-constrained quadratic programming (Lasso), IEEE Trans. Inf. Theory, 55, 5, pp. 2183-2202, (2009)
- [5] Tropp J.A., Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inf. Theory, 50, 10, pp. 2231-2242, (2004)
- [6] Wen J., Zhou Z., Wang J., Tang X., Mo Q., A sharp condition for exact support recovery with orthogonal matching pursuit, IEEE Trans. Signal Process., 65, 6, pp. 1370-1382, (2016)
- [7] Donoho D.L., Javanmard A., Montanari A., Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing, IEEE Trans. Inf. Theory, 59, 11, pp. 7434-7464, (2013)
- [8] Amelunxen D., Lotz M., McCoy M.B., Tropp J.A., Living on the edge: Phase transitions in convex programs with random data, Inf. Infer., 3, 3, pp. 224-294, (2014)
- [9] Wainwright M., Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting, IEEE Trans. Inf. Theory, 55, 12, pp. 5728-5741, (2009)
- [10] Arias-Castro E., Candes E.J., Davenport M.A., On the fundamental limits of adaptive sensing, IEEE Trans. Inf. Theory, 59, 1, pp. 472-481, (2013)