Improved weak lensing photometric redshift calibration via StratLearn and hierarchical modelling

被引:1
作者
Autenrieth, Maximilian [1 ]
Wright, Angus H. [2 ]
Trotta, Roberto [3 ,4 ,5 ,6 ]
van Dyk, David A. [1 ]
Stenning, David C. [7 ]
Joachimi, Benjamin [8 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Ruhr Univ Bochum, Astron Inst AIRUB, Fac Phys & Astron, German Ctr Cosmol Lensing, D-44780 Bochum, Germany
[3] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[4] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[5] Italian Res Ctr High Performance Comp Big Data & Q, Bologna, Italy
[6] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy
[7] Simon Fraser Univ, Dept Stat & Actuarial Sci, 8888 Univ Dr, Burnaby, BC, Canada
[8] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
methods: statistical; galaxies: distances and redshifts; large-scale structure of Universe; cosmology: observations; CHALLENGE LIGHTCONE SIMULATION; 2-POINT CORRELATION-FUNCTIONS; CROSS-CORRELATION REDSHIFTS; COSMOLOGICAL CONSTRAINTS; DATA RELEASE; DISTRIBUTIONS; INFERENCE; BIAS; KIDS+VIKING-450; PRECISION;
D O I
10.1093/mnras/stae2243
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Discrepancies between cosmological parameter estimates from cosmic shear surveys and from recent Planck cosmic microwave background measurements challenge the ability of the highly successful Lambda CDM model to describe the nature of the Universe. To rule out systematic biases in cosmic shear survey analyses, accurate redshift calibration within tomographic bins is key. In this paper, we improve photo-z calibration via Bayesian hierarchical modeling of full galaxy photo-z conditional densities, by employing StratLearn, a recently developed statistical methodology, which accounts for systematic differences in the distribution of the spectroscopic training/source set and the photometric target set. Using realistic simulations that were designed to resemble the KiDS + VIKING-450 data set, we show that StratLearn-estimated conditional densities improve the galaxy tomographic bin assignment, and that our StratLearn-Bayesian framework leads to nearly unbiased estimates of the target population means. This leads to a factor of similar to 2 improvement upon often used and state-of-the-art photo-z calibration methods. Our approach delivers a maximum bias per tomographic bin of Delta < z >=0.0095 +/- 0.0089, with an average absolute bias of 0.0052 +/- 0.0067 across the five tomographic bins.
引用
收藏
页码:3808 / 3831
页数:24
相关论文
共 81 条
[1]   Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing [J].
Abbott, T. M. C. ;
Aguena, M. ;
Alarcon, A. ;
Allam, S. ;
Alves, O. ;
Amon, A. ;
Andrade-Oliveira, F. ;
Annis, J. ;
Avila, S. ;
Bacon, D. ;
Baxter, E. ;
Bechtol, K. ;
Becker, M. R. ;
Bernstein, G. M. ;
Bhargava, S. ;
Birrer, S. ;
Blazek, J. ;
Brandao-Souza, A. ;
Bridle, S. L. ;
Brooks, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Camacho, H. ;
Campos, A. ;
Carnero Rosell, A. ;
Carrasco Kind, M. ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Chen, A. ;
Chen, R. ;
Choi, A. ;
Conselice, C. ;
Cordero, J. ;
Costanzi, M. ;
Crocce, M. ;
da Costa, L. N. ;
Pereira, M. E. da Silva ;
Davis, C. ;
Davis, T. M. ;
De Vicente, J. ;
DeRose, J. ;
Desai, S. ;
Di Valentino, E. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Dodelson, S. ;
Doel, P. ;
Doux, C. .
PHYSICAL REVIEW D, 2022, 105 (02)
[2]   Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies [J].
Abdalla, Elcio ;
Abellan, Guillermo Franco ;
Aboubrahim, Amin ;
Agnello, Adriano ;
Akarsu, Ozgur ;
Akrami, Yashar ;
Alestas, George ;
Aloni, Daniel ;
Amendola, Luca ;
Anchordoqui, Luis A. ;
Anderson, Richard I. ;
Arendse, Nikki ;
Asgari, Marika ;
Ballardini, Mario ;
Bargerx, Vernon ;
Basilakos, Spyros ;
Batista, Ronaldo C. ;
Battistelli, Elia S. ;
Battye, Richard ;
Benetti, Micol ;
Benisty, David ;
Berlin, Asher ;
de Bernardis, Paolo ;
Berti, Emanuele ;
Bidenko, Bohdan ;
Birrer, Simon ;
Blakeslee, John P. ;
Boddy, Kimberly K. ;
Bom, Clecio R. ;
Bonilla, Alexander ;
Borghi, Nicola ;
Bouchet, Francois R. ;
Braglia, Matteo ;
Buchert, Thomas ;
Buckley-Geer, Elizabeth ;
Calabrese, Erminia ;
Caldwell, Robert R. ;
Camarena, David ;
Capozziello, Salvatore ;
Casertano, Stefano ;
Chen, Angela ;
Chen, Geoff C-F ;
Chen, Hsin-Yu ;
Chluba, Jens ;
Chudaykin, Anton ;
Cicoli, Michele ;
Copi, Craig J. ;
Courbin, Fred ;
Cyr-Racine, Francis-Yan ;
Czerny, Bozena .
JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2022, 34 :49-211
[3]  
Abell P.A., 2009, LSST Science Book
[4]   Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model - Application to realistic N-body simulations [J].
Alarcon, Alex ;
Sanchez, Carles ;
Bernstein, Gary M. ;
Gaztanaga, Enrique .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (02) :2614-2631
[5]  
Amara A., 2008, MNRAS, V391, P228, DOI DOI 10.1111/J.1365-2966.2008.13880.X
[6]   Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration [J].
Amon, A. ;
Gruen, D. ;
Troxel, M. A. ;
MacCrann, N. ;
Dodelson, S. ;
Choi, A. ;
Doux, C. ;
Secco, L. F. ;
Samuroff, S. ;
Krause, E. ;
Cordero, J. ;
Myles, J. ;
DeRose, J. ;
Wechsler, R. H. ;
Gatti, M. ;
Navarro-Alsina, A. ;
Bernstein, G. M. ;
Jain, B. ;
Blazek, J. ;
Alarcon, A. ;
Ferte, A. ;
Lemos, P. ;
Raveri, M. ;
Campos, A. ;
Prat, J. ;
Sanchez, C. ;
Jarvis, M. ;
Alves, O. ;
Andrade-Oliveira, F. ;
Baxter, E. ;
Bechtol, K. ;
Becker, M. R. ;
Bridle, S. L. ;
Camacho, H. ;
Carnero Rosell, A. ;
Carrasco Kind, M. ;
Cawthon, R. ;
Chang, C. ;
Chen, R. ;
Chintalapati, P. ;
Crocce, M. ;
Davis, C. ;
Diehl, H. T. ;
Drlica-Wagner, A. ;
Eckert, K. ;
Eifler, T. F. ;
Elvin-Poole, J. ;
Everett, S. ;
Fang, X. ;
Fosalba, P. .
PHYSICAL REVIEW D, 2022, 105 (02)
[7]   KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics [J].
Asgari, Marika ;
Lin, Chieh-An ;
Joachimi, Benjamin ;
Giblin, Benjamin ;
Heymans, Catherine ;
Hildebrandt, Hendrik ;
Kannawadi, Arun ;
Stolzner, Benjamin ;
Troster, Tilman ;
van den Busch, Jan Luca ;
Wright, Angus H. ;
Bilicki, Maciej ;
Blake, Chris ;
de Jong, Jelte ;
Dvornik, Andrej ;
Erben, Thomas ;
Getman, Fedor ;
Hoekstra, Henk ;
Koehlinger, Fabian ;
Kuijken, Konrad ;
Miller, Lance ;
Radovich, Mario ;
Schneider, Peter ;
Shan, HuanYuan ;
Valentijn, Edwin .
ASTRONOMY & ASTROPHYSICS, 2021, 645
[8]   Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies [J].
Austin, Peter C. ;
Stuart, Elizabeth A. .
STATISTICS IN MEDICINE, 2015, 34 (28) :3661-3679
[9]  
Autenrieth M., 2021, Journal of Educational Data Mining, V13, P24
[10]   Stratified learning: A general-purpose statistical method for improved learning under covariate shift [J].
Autenrieth, Maximilian ;
van Dyk, David A. ;
Trotta, Roberto ;
Stenning, David C. .
STATISTICAL ANALYSIS AND DATA MINING-AN ASA DATA SCIENCE JOURNAL, 2024, 17 (01)