Silica particulate dispersion during additive friction deposition in a metal matrix composite

被引:0
作者
Lopez, Jessica J. [1 ]
Williams, Malcolm B. [2 ]
Rushing, Timothy W. [3 ]
Jordon, J. Brian [3 ]
Allison, Paul G. [2 ]
Thompson, Gregory B. [1 ,4 ]
机构
[1] Univ Alabama, Dept Met Engn, 3434 HM Comer Bldg, Tuscaloosa, AL 35487 USA
[2] Baylor Univ, Dept Mech Engn, 1311 S 5th St, Waco, TX 76706 USA
[3] US Army Engineer Res & Dev Ctr, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
[4] Univ Alabama, Alabama Mat Inst, 1005 Bevill Bldg,201 7th Ave, Tuscaloosa, AL 35487 USA
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 33卷
关键词
Additive friction stir deposition; Silica; Aluminum; Composite; Dispersion;
D O I
10.1016/j.jmrt.2024.11.099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a study of a low-power, solid-state additive manufacturing process to simultaneously mix and build a metal matrix composite. Specifically, an Al 6061 powder was blended with 11 wt% silica (SiO2) after which the powders were solid-state consolidated through additive friction stir deposition (AFSD). The inclusion of the SiO2 resulted in an average hardness of 70 +/- 1 HV as compared to a control (no SiO2) of 52 +/- 1 Hv. However, for the SiO2 composite, the hardness varied in both the radial build and vertical build directions, with the highest hardness found in the centerline of the deposit. This inhomogeneity has been contributed to differences in how the SiO2 particulates evolve during the stirring and mixing processes of AFSD. Furthermore, this variation in particulate evolution was found to be a useful marker in understanding the microstructure evolution through AFSD.
引用
收藏
页码:8063 / 8070
页数:8
相关论文
共 35 条
[1]  
Anderson K., 2019, Prop. Sel. Alum. Alloy, V2, P374, DOI DOI 10.31399/ASM.HB.V02B.A0006708
[2]   Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired via Additive Friction Stir Deposition [J].
Avery, D. Z. ;
Cleek, C. E. ;
Phillips, B. J. ;
Rekha, M. Y. ;
Kinser, R. P. ;
Rao, H. M. ;
Brewer, L. N. ;
Allison, P. G. ;
Jordon, J. B. .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (03)
[3]   Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy [J].
Avery, D. Z. ;
Phillips, B. J. ;
Mason, C. J. T. ;
Palermo, M. ;
Williams, M. B. ;
Cleek, C. ;
Rodriguez, O. L. ;
Allison, P. G. ;
Jordon, J. B. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (06) :2778-2795
[4]  
Boyce D.E., 2000, Simulations of the Transport and Distortion of Foil Markers in Friction Stir Welding, P1
[5]  
Boyd J.D., 2000, Comprehensive Composite Materials, V3, P139
[6]   Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion [J].
Caprio, Leonardo ;
Demir, Ali Gokhan ;
Previtali, Barbara ;
Colosimo, Bianca Maria .
ADDITIVE MANUFACTURING, 2020, 32
[7]  
Clyne T.W., 1993, INTRO METAL MATRIX C
[8]   Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds [J].
da Silva, A. A. M. ;
Arruti, E. ;
Janeiro, G. ;
Aldanondo, E. ;
Alvarez, P. ;
Echeverria, A. .
MATERIALS & DESIGN, 2011, 32 (04) :2021-2027
[9]   Effect of the phase transformation on fracture behaviour of fused silica refractories [J].
Dai, Yajie ;
Yin, Yucheng ;
Xu, Xiaofeng ;
Jin, Shengli ;
Li, Yawei ;
Harmuth, Harald .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (16) :5601-5609
[10]   Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing [J].
Dolatkhah, A. ;
Golbabaei, P. ;
Givi, M. K. Besharati ;
Molaiekiya, F. .
MATERIALS & DESIGN, 2012, 37 :458-464