Latest developments in anisotropic hydrodynamics

被引:0
作者
Tinti, Leonardo [1 ]
机构
[1] Institute of Physics, Jan Kochanowski University, Swietokrzyska 15, Kielce
关键词
Anisotropy - Boltzmann equation;
D O I
10.5506/APhysPolBSupp.8.477
中图分类号
学科分类号
摘要
We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1)-and (1+1)-dimensional cases it is consistent with the second-order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the secondorder viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.
引用
收藏
页码:477 / 482
页数:5
相关论文
共 23 条
[1]  
Muronga A., Phys. Rev. C, 69, (2004)
[2]  
Luzum M., Romatschke P., Phys. Rev. C, 78, (2008)
[3]  
Erratum Ibid., 79, (2009)
[4]  
Schenke B., Jeon S., Gale C., Phys. Lett. B, 702, (2011)
[5]  
Shen C., Heinz U., Huovinen P., Song H., Phys. Rev. C, 84, (2011)
[6]  
Bozek P., Wyskiel-Piekarska I., Phys. Rev. C, 85, (2012)
[7]  
Denicol G.S., Niemi H., Molnar E., Rischke D.H., Phys. Rev. D, 85, (2012)
[8]  
Danielewicz P., Gyulassy M., Phys. Rev. D, 31, (1985)
[9]  
Kovtun P., Son D.T., Starinets A.O., Phys. Rev. Lett., 94, (2005)
[10]  
Martinez M., Ryblewski R., Strickland M., Phys. Rev. C, 85, (2012)