A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction

被引:34
|
作者
Tang T. [1 ]
Wang Z. [1 ]
Guan J. [1 ]
机构
[1] Institute of Physical Chemistry, College of Chemistry, Jilin University, Jilin, Changchun
来源
Chinese Journal of Catalysis | 2022年 / 43卷 / 03期
基金
中国国家自然科学基金;
关键词
Defect; Hydrogen adsorption/desorption energy; Hydrogen evolution reaction; Two-dimensional material; Vacancy;
D O I
10.1016/S1872-2067(21)63945-1
中图分类号
学科分类号
摘要
The exploration of efficient and earth-rich electrocatalysts for electrochemical reactions is critical to the implementation of large-scale green energy conversion and storage techniques. Two-dimensional (2D) materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications, which can be divided into metal-free materials (such as graphene, carbon nitride and black phosphorus) and transition metal-based materials (such as halogenides, phosphates, oxides, hydroxides, and MXenes). For faultless 2D materials, they usually exhibit poor electrochemical hydrogen evolution reaction (HER) activity because only edge sites can be available while the base surface is chemically inactive. Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity. This review presents feasible design strategies for constructing defect sites (including edge defects, vacancy defects and dopant derived defects) in 2D materials to improve their HER performance. The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail, providing valuable guidance for rationally fabricating efficient HER electrocatalysts. The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER. © 2022 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences
引用
收藏
页码:636 / 678
页数:42
相关论文
共 50 条
  • [1] A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction
    Tang, Tianmi
    Wang, Zhenlu
    Guan, Jingqi
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (03) : 636 - 678
  • [2] Moire superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction
    Li, Yang
    Hua, Yuqi
    Sun, Ning
    Liu, Shijie
    Li, Hengxu
    Wang, Cheng
    Yang, Xinyu
    Zhuang, Zechao
    Wang, Longlu
    NANO RESEARCH, 2023, 16 (07) : 8712 - 8728
  • [3] Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction
    Yang Li
    Yuqi Hua
    Ning Sun
    Shijie Liu
    Hengxu Li
    Cheng Wang
    Xinyu Yang
    Zechao Zhuang
    Longlu Wang
    Nano Research, 2023, 16 : 8712 - 8728
  • [4] Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction
    Zhongshui Li
    Yang Yue
    Junchen Peng
    Zhimin Luo
    ChineseChemicalLetters, 2023, 34 (01) : 121 - 131
  • [5] Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction
    Li, Zhongshui
    Yue, Yang
    Peng, Junchen
    Luo, Zhimin
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [6] Defect engineering in two-dimensional electrocatalysts for hydrogen evolution
    Xie, Junfeng
    Yang, Xueying
    Xie, Yi
    NANOSCALE, 2020, 12 (07) : 4283 - 4294
  • [7] Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction
    Li, Saisai
    Sun, Jianrui
    Guan, Jingqi
    Chinese Journal of Catalysis, 2021, 42 (04): : 511 - 556
  • [8] Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction
    Li, Saisai
    Sun, Jianrui
    Guan, Jingqi
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (04) : 511 - 556
  • [9] Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution
    Shi, Jiangwei
    Meng, Nannan
    Guo, Yamei
    Yu, Yifu
    Zhang, Bin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (02): : 492 - 503
  • [10] Strain Engineering of Two-Dimensional Piezophotocatalytic Materials for Improved Hydrogen Evolution Reaction
    Liu, Zhao
    Wang, Biao
    Cazorla, Claudio
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (50): : 16924 - 16934