Local maximum ozone concentration prediction using neural networks

被引:0
|
作者
Wieland, Dominik [1 ]
机构
[1] Technische Universität Wien, Institut fur Informationssysteme, Favoritenstrasse 9, A-1040 Wien, Austria
来源
OGAI Journal (Oesterreichische Gesellschaft fuer Artificial Intelligence) | 2002年 / 21卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a summary of the author's master's thesis of the same name (German title: Prognose lokaler Ozonmaxima unter Verwendung neuronaler Netze). The work describes the use of Artificial Neural Networks (ANNs) for the short term prediction of maximum ozone concentrations in the East Austrian region. Various Multilayer Perceptron topologies (MLPs), Elman Networks (EN) and Modified Elman Networks (MEN) were tested. The individual models used ozone, temperature, cloud cover and wind data taken from the summer months of 1995 and 1996. The achieved results were satisfactory. Comparisons with alternative models showed that the neural approaches used in this study were superior.
引用
收藏
页码:3 / 6
相关论文
共 50 条
  • [21] Prediction of tropospheric ozone concentration using artificial neural networks at traffic and background urban locations in Novi Sad, Serbia
    Malinovic-Milicevic, Slavica
    Vyklyuk, Yaroslav
    Stanojevic, Gorica
    Radovanovic, Milan M.
    Doljak, Dejan
    Curcic, Nina B.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (02)
  • [22] Prediction of tropospheric ozone concentration using artificial neural networks at traffic and background urban locations in Novi Sad, Serbia
    Slavica Malinović-Milićević
    Yaroslav Vyklyuk
    Gorica Stanojević
    Milan M. Radovanović
    Dejan Doljak
    Nina B. Ćurčić
    Environmental Monitoring and Assessment, 2021, 193
  • [23] Prediction of the next day maximum ozone concentration using multiple linear and principal component regressions
    Sousa, S. I. V.
    Martins, F. G.
    Pereira, M. C.
    Alvim-Ferraz, M. C. M.
    AIR POLLUTION XIV, 2006, 86 : 101 - +
  • [24] Hourly ozone prediction for a 24-h horizon using neural networks
    Coman, Adriana
    Ionescu, Anda
    Candau, Yves
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (12) : 1407 - 1421
  • [25] Ozone modeling using neural networks
    Narasimhan, R
    Keller, J
    Subramaniam, G
    Raasch, E
    Croley, B
    Duncan, K
    Potter, WT
    JOURNAL OF APPLIED METEOROLOGY, 2000, 39 (03): : 291 - 296
  • [26] Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
    Luna, A. S.
    Paredes, M. L. L.
    de Oliveira, G. C. G.
    Correa, S. M.
    ATMOSPHERIC ENVIRONMENT, 2014, 98 : 98 - 104
  • [27] Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
    Luna, A.S.
    Paredes, M.L.L.
    de Oliveira, G.C.G.
    Corrêa, S.M.
    Atmospheric Environment, 2014, 98 (01) : 98 - 104
  • [28] Prediction of drain dissolved oxygen concentration using artificial neural networks
    El-Beshry, M.Z.
    Journal of Engineering and Applied Science, 2007, 54 (04): : 393 - 408
  • [29] Prediction of the radon concentration in thermal waters using artificial neural networks
    Erzin, Selin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (10) : 7321 - 7328
  • [30] Prediction of the radon concentration in thermal waters using artificial neural networks
    Selin Erzin
    International Journal of Environmental Science and Technology, 2024, 21 : 7321 - 7328