Benchmarking the Performance of Lithium and Sodium-Ion Batteries With Different Electrode and Electrolyte Materials

被引:1
|
作者
Paul, Sandeep [1 ]
Acharyya, Debanjan [2 ]
Punetha, Deepak [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Elect & Commun Engn, Allahabad, Prayagraj, India
[2] Natl Inst Technol, Dept Elect & Instrumentat Engn, Agartala, Tripura, India
关键词
cell voltage; energy storage; Multiphysics modeling; optimization; rate capability; techno-economic modeling; ANODE;
D O I
10.1002/est2.70068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium-ion (Na-ion) batteries are considered a promising alternative to lithium-ion (Li-ion) batteries due to the abundant availability of sodium, which helps mitigate supply chain risks associated with Li-ion batteries. Many studies have focused on the design of Li-ion batteries, exploring their energy, power, and cost aspects. However, there is still a lack of similar research conducted on Na-ion batteries. A comparison of the cell voltage characteristics and rate capability of sodium and lithium-ion batteries using different types of electrodes and electrolytes. For sodium-ion batteries electrolytes used are NaPF6 and NaClO4 and electrodes used are NaCoO2, NaNiO2, NaFePO4, (Na3V2(PO4)3), graphite, hard carbon, sodium metal, and sodium titanate. For lithium-ion batteries with LiPF6 and KOH electrolytes and electrodes as LiCoO2, NMC, LVP, Li2MnSiO4, graphite, silicon, lithium titanate (LTO), lithium metal. A thorough analysis of six important performance metrics is part of the investigation: Ragone plots, Electrolyte salt concentration versus spatial coordinate, electrolyte potential versus spatial coordinate, Cell voltage versus battery cell state of charge, Cell voltage versus time, and state variable versus time. Comparing operating voltage and rated capacity NMC and graphite is selected for lithium-ion batteries as this combination provides operating voltage up to 4.2 V and a rated capacity of 275 Wh/kg, for sodium-ion for NaCoO2 and hard carbon which has an operating voltage of 2.5-3.8 V and rated capacity around 200 Wh/kg and another combination of electrode as NaFePO4 and sodium metal with NaClO4 electrolyte has a maximum operating voltage of 2.8-3.8 V and rated capacity around 200 Wh/kg. This paper shows significant influence of electrolyte selection on battery performance. The Ragone plots demonstrate that LiPF6 electrolytes in lithium-ion batteries and NaPF6 electrolytes in sodium-ion batteries both exhibit superior specific energy densities compared to their KOH and NaClO4 counterparts, respectively. The work presented in this paper encourages researchers to select alternate electrolytes and electrodes for lithium-ion and sodium-ion batteries in order to obtain optimal device performance. Li-ion has higher specific energy densities compared to Na-ion batteries. Lithium is relatively scarce and expensive; sodium is abundant and cheaper. LiPF6 in Li-ion and NaPF6 in Na-ion batteries exhibit higher specific energy densities compared to other electrolytes.LiPF6 and NaPF6 enable more favorable electrochemical reactions.Operating voltage of Na-ion is less compared to Li-ion battery.image
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recent advances in electrospun electrode materials for sodium-ion batteries
    Wang, Yao
    Liu, Yukun
    Liu, Yongchang
    Shen, Qiuyu
    Chen, Chengchen
    Qiu, Fangyuan
    Li, Ping
    Jiao, Lifang
    Qu, Xuanhui
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 225 - 241
  • [32] A chemical map of NaSICON electrode materials for sodium-ion batteries
    Singh, Baltej
    Wang, Ziliang
    Park, Sunkyu
    Gautam, Gopalakrishnan Sai
    Chotard, Jean-Noel
    Croguennec, Laurence
    Carlier, Dany
    Cheetham, Anthony K.
    Masquelier, Christian
    Canepa, Pieremanuele
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (01) : 281 - 292
  • [33] Cobalt-based electrode materials for sodium-ion batteries
    Qi, Shihan
    Wu, Daxiong
    Dong, Yan
    Liao, Jiaqin
    Foster, Christopher W.
    O'Dwyer, Colm
    Feng, Yuezhan
    Liu, Chuntai
    Ma, Jianmin
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 : 185 - 207
  • [34] ADVANCED ORGANIC ELECTRODE MATERIALS FOR RECHARGEABLE SODIUM-ION BATTERIES
    Balaraju, M.
    Reddy, B. V. Shiva
    Babu, T. A.
    Naidu, K. C. Babu
    Prasad, N. V. Krishna
    JOURNAL OF OVONIC RESEARCH, 2020, 16 (06): : 387 - 396
  • [35] Recent advances in electrospun electrode materials for sodium-ion batteries
    Yao Wang
    Yukun Liua
    Yongchang Liu
    Qiuyu Shen
    Chengcheng Chen
    Fangyuan Qiu
    Ping Li
    Lifang Jiao
    Xuanhui Qu
    Journal of Energy Chemistry , 2021, (03) : 225 - 241
  • [36] State-of-the-art electrode materials for sodium-ion batteries
    Mauger A.
    Julien C.M.
    Julien, Christian M. (christian.julien@sorbonne-universite.fr), 1600, MDPI AG, Postfach, Basel, CH-4005, Switzerland (13):
  • [37] Dual anode materials for lithium- and sodium-ion batteries
    Luo, Yuqing
    Tang, Yijian
    Zheng, Shasha
    Yan, Yan
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (10) : 4236 - 4259
  • [38] Structural engineering of electrode materials to boost high-performance sodium-ion batteries
    Liu, Qiannan
    Hu, Zhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Li, Lin
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (09):
  • [39] Recent Development on Electrode Materials with High Performance and Low Cost for Sodium-Ion Batteries
    Huang Y.
    Fang C.
    Huang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (02): : 256 - 271
  • [40] Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2021, 57 : 700 - 705