Non-Hermitian quantum fractals

被引:4
作者
Sun, Junsong [1 ]
Li, Chang-An [2 ]
Guo, Qingyang [1 ]
Zhang, Weixuan [3 ]
Feng, Shiping [4 ]
Zhang, Xiangdong [3 ]
Guo, Huaiming [1 ]
Trauzettel, Bjoern
机构
[1] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[2] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[3] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelectr, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
POWER; ELECTRONS;
D O I
10.1103/PhysRevB.110.L201103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The first quantum fractal discovered in physics is the Hofstadter butterfly. It stems from large external magnetic fields. We discover instead a class of non-Hermitian quantum fractals (NHQFs) emerging in coupled Hatano-Nelson models on a tree lattice in the absence of any fields. Based on analytic solutions, we are able to rigorously identify the self-similar recursive structures in the energy spectrum and wave functions. We prove that the complex spectrum of NHQFs bears a resemblance to the Mandelbrot set in fractal theory. The self-similarity of NHQFs is rooted in the interplay between the iterative lattice configuration and non-Hermiticity. Moreover, we show that NHQFs exist in generalized non-Hermitian systems with iterative lattice structures. Our findings open another avenue for investigating quantum fractals in non-Hermitian systems.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Non-reciprocal population dynamics in a quantum trimer [J].
Downing, C. A. ;
Zueco, D. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2255)
[32]   Discriminating quantum field theories in non-inertial frames [J].
Doukas, Jason ;
Adesso, Gerardo ;
Pirandola, Stefano ;
Dragan, Andrzej .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (03)
[33]   A Field Guide to Non-Onsager Quantum Oscillations in Metals [J].
Leeb, Valentin ;
Huber, Nico ;
Pfleiderer, Christian ;
Knolle, Johannes ;
Wilde, Marc A. .
ADVANCED PHYSICS RESEARCH, 2025, 4 (04)
[34]   Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks [J].
Alanis, Dimitrios ;
Botsinis, Panagiotis ;
Babar, Zunaira ;
Ng, Soon Xin ;
Hanzo, Lajos .
IEEE ACCESS, 2015, 3 :1704-1728
[35]   Non-parabolic model for InAs/GaAs quantum dot capacitance spectroscopy [J].
Filikhin, I. ;
Deyneka, E. ;
Vlahovic, B. .
SOLID STATE COMMUNICATIONS, 2006, 140 (9-10) :483-486
[36]   Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime [J].
Altimiras, C. ;
le Sueur, H. ;
Gennser, U. ;
Cavanna, A. ;
Mailly, D. ;
Pierre, F. .
NATURE PHYSICS, 2010, 6 (01) :34-39
[37]   Characterizing the Non-equilibrium Dynamics of Field-Driven Correlated Quantum Systems [J].
Fotso, Herbert F. ;
Freericks, James K. .
FRONTIERS IN PHYSICS, 2020, 8
[38]   Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States [J].
Liu, Zhao ;
Moeller, Gunnar ;
Bergholtz, Emil J. .
PHYSICAL REVIEW LETTERS, 2017, 119 (10)
[39]   Voltage Controlled Nanoscale Magnetic Devices for Non-Volatile Memory and Scalable Quantum Computing [J].
Rajib, Md Mahadi ;
Atulasimha, Jayasimha .
2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC, 2023, :1798-1803
[40]   Non-Markovian effect on quantum Otto engine: Role of system-reservoir interaction [J].
Shirai, Yuji ;
Hashimoto, Kazunari ;
Tezuka, Ryuta ;
Uchiyama, Chikako ;
Hatano, Naomichi .
PHYSICAL REVIEW RESEARCH, 2021, 3 (02)