Non-Hermitian quantum fractals

被引:5
作者
Sun, Junsong [1 ]
Li, Chang-An [2 ]
Guo, Qingyang [1 ]
Zhang, Weixuan [3 ]
Feng, Shiping [4 ]
Zhang, Xiangdong [3 ]
Guo, Huaiming [1 ]
Trauzettel, Bjoern
机构
[1] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[2] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[3] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelectr, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
POWER; ELECTRONS;
D O I
10.1103/PhysRevB.110.L201103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The first quantum fractal discovered in physics is the Hofstadter butterfly. It stems from large external magnetic fields. We discover instead a class of non-Hermitian quantum fractals (NHQFs) emerging in coupled Hatano-Nelson models on a tree lattice in the absence of any fields. Based on analytic solutions, we are able to rigorously identify the self-similar recursive structures in the energy spectrum and wave functions. We prove that the complex spectrum of NHQFs bears a resemblance to the Mandelbrot set in fractal theory. The self-similarity of NHQFs is rooted in the interplay between the iterative lattice configuration and non-Hermiticity. Moreover, we show that NHQFs exist in generalized non-Hermitian systems with iterative lattice structures. Our findings open another avenue for investigating quantum fractals in non-Hermitian systems.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Non-Hermitian fractional quantum Hall states [J].
Yoshida, Tsuneya ;
Kudo, Koji ;
Hatsugai, Yasuhiro .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Magnetic Bloch oscillations in a non-Hermitian quantum Ising chain [J].
Zhang, K. L. ;
Song, Z. .
PHYSICAL REVIEW B, 2024, 109 (10)
[3]   Non-Hermitian fermions with effective mass [J].
Lima, F. C. E. ;
Monteiro, L. N. ;
Almeida, C. A. S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 150
[4]   Non-Hermitian hybrid silicon photonic switching [J].
Feng, Xilin ;
Wu, Tianwei ;
Gao, Zihe ;
Zhao, Haoqi ;
Wu, Shuang ;
Zhang, Yichi ;
Ge, Li ;
Feng, Liang .
NATURE PHOTONICS, 2025, 19 (03) :264-270
[5]   Diffraction and pseudospectra in non-Hermitian quasiperiodic lattices [J].
Ghatak, Ananya ;
Kaltsas, Dimitrios H. ;
Kulkarni, Manas ;
Makris, Konstantinos G. .
PHYSICAL REVIEW E, 2024, 110 (06)
[6]   Non-Hermitian skin effect in a single trapped ion [J].
Lin, Ziguang ;
Lin, Yiheng ;
Yi, Wei .
PHYSICAL REVIEW A, 2022, 106 (06)
[7]   Non-Hermitian Bloch-Zener phase transition [J].
Longhi, Stefano .
OPTICS LETTERS, 2022, 47 (24) :6345-6348
[8]   Versatile braiding of non-Hermitian topological edge states [J].
Zhu, Bofeng ;
Wang, Qiang ;
Wang, You ;
Wang, Qi Jie ;
Chong, Y. D. .
PHYSICAL REVIEW B, 2024, 110 (13)
[9]   Uniform optical gain as a non-Hermitian control knob [J].
Hashemi, A. ;
Busch, K. ;
Ozdemir, S. K. ;
El-Ganainy, R. .
PHYSICAL REVIEW RESEARCH, 2022, 4 (04)
[10]   Transfer matrix study of the Anderson transition in non-Hermitian systems [J].
Luo, Xunlong ;
Ohtsuki, Tomi ;
Shindou, Ryuichi .
PHYSICAL REVIEW B, 2021, 104 (10)