CSP-Net: Common spatial pattern empowered neural networks for EEG-based motor imagery classification

被引:5
作者
Jiang, Xue
Meng, Lubin
Chen, Xinru
Xu, Yifan
Wu, Dongrui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Minist Educ Image Proc & Intelligent Contr, Wuhan 430074, Peoples R China
关键词
Brain-computer interfaces; Electroencephalogram; Motor imagery; Common spatial pattern; Convolutional neural network; BRAIN-COMPUTER INTERFACES; SINGLE-TRIAL EEG; FILTERS;
D O I
10.1016/j.knosys.2024.112668
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain- computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSPempowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain-computer interfaces.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Deep learning for motor imagery EEG-based classification: A review [J].
Al-Saegh, Ali ;
Dawwd, Shefa A. ;
Abdul-Jabbar, Jassim M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
[2]   Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review [J].
Altaheri, Hamdi ;
Muhammad, Ghulam ;
Alsulaiman, Mansour ;
Amin, Syed Umar ;
Altuwaijri, Ghadir Ali ;
Abdul, Wadood ;
Bencherif, Mohamed A. ;
Faisal, Mohammed .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20) :14681-14722
[3]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[4]   Speech synthesis from neural decoding of spoken sentences [J].
Anumanchipalli, Gopala K. ;
Chartier, Josh ;
Chang, Edward F. .
NATURE, 2019, 568 (7753) :493-+
[5]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[6]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[7]   Neurophysiological predictor of SMR-based BCI performance [J].
Blankertz, Benjamin ;
Sannelli, Claudia ;
Haider, Sebastian ;
Hammer, Eva M. ;
Kuebler, Andrea ;
Mueller, Klaus-Robert ;
Curio, Gabriel ;
Dickhaus, Thorsten .
NEUROIMAGE, 2010, 51 (04) :1303-1309
[8]   Deep learning for electroencephalogram (EEG) classification tasks: a review [J].
Craik, Alexander ;
He, Yongtian ;
Contreras-Vidal, Jose L. .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
[9]   Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].
Dornhege, G ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :993-1002
[10]   Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI [J].
Faller, Josef ;
Vidaurre, Carmen ;
Solis-Escalante, Teodoro ;
Neuper, Christa ;
Scherer, Reinhold .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (03) :313-319