The influence of salt concentration on the dissolution of microbubbles in bulk aqueous electrolyte solutions

被引:0
作者
Yakovlev, Egor V. [1 ]
Kryuchkov, Nikita P. [1 ]
Gorbunov, Evgeny A. [2 ]
Zotov, Arsen K. [1 ,2 ]
Ovcharov, Pavel V. [1 ]
Yurchenko, Stanislav O. [1 ]
机构
[1] Bauman Moscow State Tech Univ, 2nd Baumanskaya Str 5-1, Moscow 105005, Russia
[2] RAS, Osipyan Inst Solid State Phys, Academician Osipyan Str 2, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
GAS NANOBUBBLE PHASE; DYNAMICS; BUBBLES; WATER;
D O I
10.1063/5.0231481
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study microbubbles (MBs) in aqueous electrolyte solutions and show that increasing the salt concentration slows down the kinetics of MB dissolution. We modified the Epstein-Plesset theory and experimented with NaCl aqueous solutions to estimate the MB effective surface charge and to compare it with predictions from the modified Poisson-Boltzmann theory. Our results reveal a mechanism responsible for the change in the dissolution of MBs in aqueous electrolyte solutions, with implications for emerging fields ranging from physics of solutions to soft and biological matter.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Dollet B., Marmottant P., Garbin V., Bubble dynamics in soft and biological matter, Annu. Rev. Fluid Mech., 51, pp. 331-355, (2019)
  • [2] Struyven F., Sellier M., Mandin P., Review: Interactions between electrogenerated bubbles and microfluidic phenomena, Int. J. Hydrogen Energy, 48, pp. 32607-32630, (2023)
  • [3] Postnikov A.V., Uvarov I.V., Lokhanin M.V., Svetovoy V.B., Electrically controlled cloud of bulk nanobubbles in water solutions, PLoS One, 12, (2017)
  • [4] Svetovoy V.B., Prokaznikov A.V., Postnikov A.V., Uvarov I.V., Palasantzas G., Explosion of microbubbles generated by the alternating polarity water electrolysis, Energies, 13, (2019)
  • [5] Uvarov I.V., Shlepakov P.S., Melenev A.E., Ma K., Svetovoy V.B., Krijnen G.J.M., A peristaltic micropump based on the fast electrochemical actuator: Design, fabrication, and preliminary testing, Actuators, 10, (2021)
  • [6] Svetovoy V.B., Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles, Curr. Opin. Colloid Interface Sci., 52, (2021)
  • [7] Fan K., Huang Z., Lin H., Shen L., Gao C., Zhou G., Hu J., Yang H., Xu F., Effects of micro-/nanobubble on membrane antifouling performance and the mechanism insights, J. Cleaner Prod., 376, (2022)
  • [8] Dong M., Wang G., Zhang X., Tan D., Ren J., Colorado H., Hou H., Toktarbay Z., Guo Z., An overview of polymer foaming assisted by supercritical fluid, Adv. Compos. Hybrid Mater., 6, (2023)
  • [9] Marcelino K.R., Ling L., Wongkiew S., Nhan H.T., Surendra K.C., Shitanaka T., Lu H., Khanal S.K., Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges, Crit. Rev. Environ. Sci. Technol., 53, pp. 1378-1403, (2022)
  • [10] Porter T.R., Mulvagh S.L., Abdelmoneim S.S., Becher H., Belcik J.T., Bierig M., Choy J., Gaibazzi N., Gillam L.D., Janardhanan R., Kutty S., Leong-Poi H., Lindner J.R., Main M.L., Mathias W., Park M.M., Senior R., Villanueva F., Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American society of echocardiography guidelines update, J. Am. Soc. Echocardiography, 31, pp. 241-274, (2018)