Preparation of graphene/δ-MnO2 composites and supercapacitor performance

被引:0
|
作者
Zhu H. [1 ,2 ]
Zhao J. [1 ,2 ]
Pang M. [2 ]
Jiang S. [2 ]
Xing B. [2 ]
Qiang D. [2 ]
Du Y. [2 ]
机构
[1] Institute of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041000, Shanxi
[2] Institute of Carbon Materials, Shanxi Datong University, Datong, 037009, Shanxi
来源
Zhao, Jianguo (jgzhaoshi@163.com) | 2017年 / Materials China卷 / 68期
关键词
Electrochemistry; Electrode material; Specific capacitance; Supercapacitor;
D O I
10.11949/j.issn.0438-1157.20171036
中图分类号
学科分类号
摘要
This work mainly uses the one pot to synthesis RGO/δ-MnO2 composites, which is characterized using X-ray powder diffraction (XRD), low pressure nitrogen adsorption stripping (BET), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), energy spectrum (EDS) and thermal gravimetric analyzer (TGA). The electrochemical performance is tested by the cyclic voltammetry (CV), constant current charge/discharge test (GCD) and loop test. Results show that the RGO/δ-MnO2 composites possess more excellent electrochemical performance than pure δ-MnO2 and pure graphene. When the current density is 1 A•g-1, the specific capacitance of RGO/δ-MnO2 composite can reach 322.6 F•g-1, which is higher than that of the pure δ-MnO2 (234.2 F•g-1) and the pure graphene (212.1 F•g-1). Moreover, the specific capacitance retention of RGO/δ-MnO2 composites remains 79.1% when current density increases to 10 A•g-1. The specific capacitance of RGO/δ-MnO2 composite is still as high as 252 F•g-1 (99.6%) even after 1000 times constant current charge/discharge tests. These results indicate that the composite will be a kind of promising supercapacitor electrode material. © All Right Reserved.
引用
收藏
页码:4824 / 4832
页数:8
相关论文
共 31 条
  • [1] Tian X.D., Li X., Yang T., Et al., Recent advances on synthesis and supercapacitor application of binary metal oxide, Journal of Inorganic Materials, 32, 5, pp. 459-468, (2017)
  • [2] Yan L., Kong H., Li Z.J., Synthesis and supercapacitor property of three-dimensional graphene/Ni-Al layered double hydroxide composite, Acta Chimica Sinica, 71, pp. 822-828, (2013)
  • [3] Chen H., Zhou S.X., Chen M., Et al., Reduced graphene oxide-MnO<sub>2</sub> hollow sphere hybrid nanostructures as high-performance electrochemical capacitors, J. Mater. Chem., 22, 48, pp. 25207-25216, (2012)
  • [4] Zhang J.T., Zhao X.S., A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons, Carbon, 52, pp. 1-9, (2013)
  • [5] Bae J., Song M.K., Park Y.J., Et al., Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage, Angew. Chem. Int. Edit., 50, 7, pp. 1683-1687, (2011)
  • [6] Katakabe T., Kaneko T., Watanabe W., Et al., Electric double-layer capacitors using "bucky gels" consisting of an ionic liquid and carbon nanotubes, J. Electrochem. Soc., 152, 10, pp. A1913-A1916, (2005)
  • [7] Stoller M.D., Park S.J., Zhu Y.W., Et al., Graphene-based ultracapacitors, Nano Letters, 8, 10, pp. 3498-3502, (2008)
  • [8] Frackowiak E., Beguin F., Carbon materials for the electrochemical storage of energy incapacitors, Carbon, 39, pp. 937-950, (2001)
  • [9] Probstle H., Schmitt C., Fricke J., Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources, 105, 2, pp. 189-194, (2002)
  • [10] Park J.H., Ko J.M., Park O.O., Carbon nanotube/RuO<sub>2</sub> nanocomposite electrodes for supercapacitors, J. Electrochem. Soc., 150, 7, pp. A864-A867, (2003)