Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments

被引:0
|
作者
Abadel, Aref A. [1 ]
Alharbi, Yousef R. [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
来源
MATERIALS SCIENCE-POLAND | 2024年 / 42卷 / 03期
关键词
Concrete cylinder; CFRP; Compression strength; Elevated temperature; Finite element; Fiber-reinforced concrete; Strengthening; MECHANICAL-PROPERTIES; ELEVATED-TEMPERATURES; RESIDUAL STRENGTH; SHEAR BEHAVIOR; STEEL; COLUMNS; PERFORMANCE; RESISTANCE; POLYPROPYLENE; SQUARE;
D O I
10.2478/msp-2024-0029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reinforced concrete constructions are extremely vulnerable to fire damage over their lifespan. Despite its non-flammability, concrete is nonetheless affected by fire exposure, which impacts its stress-strain characteristics and durability. Therefore, developing strengthening methods is an economical option compared to the costs of demolishing and rebuilding constructions. This article aims to experimentally and numerically examine the strengthening of fiber-reinforced concrete cylinders by using carbon fiber-reinforced polymer (CFRP) strips after exposure to 600 degrees C. Four different concrete mixtures have been investigated. A total of 48 cylinders were subjected to axial compression testing. The testing program primarily focused on three variables: (i) exposure temperature (600 degrees C); (ii) the effect of using various types of fibers (steel fiber, polypropylene, and hybrid fibers); and (iii) CFRP strengthening. Finite element (FE) models were created using the ABAQUS program to conduct numerical analysis of concrete cylinders in exposure to heating scenarios and strengthen them with CFRP strips. The results show that when subjected to a temperature of 600 degrees C, the compressive strength decreased significantly, ranging from 23.7 to 53.3%. The presence of fibers significantly impacted compressive strength, regardless of the fiber type, leading to an enhanced ratio of up to 34.7% in comparison to the control cylinders (i.e., unheated and unstrengthened cylinders). The suggested strengthening procedures using CFRP strips effectively repaired the heat-damaged cylinders, surpassing the initial compressive strength of unheated cylinders. The FE prediction shows satisfactory, consistent results in comparison to experimental data.
引用
收藏
页码:17 / 38
页数:22
相关论文
共 50 条
  • [21] Effect of elevated temperature exposure on the flexural behavior of steel-polypropylene hybrid fiber-reinforced concrete
    Suwanvitaya, Prae
    Chotickai, Piya
    MATERIALS AND STRUCTURES, 2024, 57 (03)
  • [22] Effect of glass fiber-reinforced polymer and epoxy injection on compressive strength of elevated temperature damaged concrete
    Demirboga, Ramazan
    Kaygusuz, Mehmet Akif
    Polat, Riza
    FIRE AND MATERIALS, 2013, 37 (02) : 100 - 113
  • [23] Flexural behavior of CFRP Strengthened Reinforced Concrete Beams
    Zhang, Hui
    Wu, Hongsheng
    Li, Xingquan
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 740 - +
  • [24] Evaluation of shear behavior of short-span reinforced concrete deep beams strengthened with fiber reinforced polymer strips
    Akkaya, Hasan Cem
    Aydemir, Cem
    Arslan, Guray
    ENGINEERING STRUCTURES, 2024, 299
  • [25] Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures
    Zheng, Wenzhong
    Li, Haiyan
    Wang, Ying
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 35 : 931 - 940
  • [26] Mechanical properties of steel fiber-reinforced geopolymer concrete after high temperature exposure
    Zheng, Yongqian
    Zhang, Wenfeng
    Zheng, Liya
    Zheng, Juhuan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 439
  • [27] Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation
    Kim, SH
    Aboutaha, RS
    STEEL AND COMPOSITE STRUCTURES, 2004, 4 (05) : 333 - 353
  • [28] Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete-HFRC
    Quinino, Uziel Cavalcanti de Medeiros
    Christ, Roberto
    Tutikian, Bernardo Fonseca
    da Silva, Luis Carlos Pinto
    FIBERS, 2022, 10 (08)
  • [29] Behavior of Reinforced Concrete Beams without Stirrups and Strengthened with Basalt Fiber-Reinforced Polymer Sheets
    Zhang, Wei
    Kang, Shuaiwen
    Huang, Yiqun
    Liu, Xiang
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2023, 27 (02)
  • [30] Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures
    Rudnik, Ewa
    Drzymala, Tomasz
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 131 (02) : 1005 - 1015