Hybrid of imperialist competitive algorithm and particle swarm optimization for parameter extraction of photovoltaic cells

被引:1
作者
Wang, Hongli [1 ]
Song, Shanfei [2 ]
Li, Peng [1 ]
Zhang, Wenjun [1 ]
Lei, Dongge [3 ]
Wu, Fei [3 ]
机构
[1] State GRID Quzhou Power Supply Co, 6 Xinhe Rd, Quzhou 324003, Zhejiang, Peoples R China
[2] Zhejiang Leibo Human Resources Dev Co Ltd, Quzhou Branch, 900 Century Ave, Quzhou 324003, Zhejiang, Peoples R China
[3] Quzhou Univ, Coll Elect & Informat Engn, Quzhou 324000, Zhejiang, Peoples R China
关键词
All Open Access; Gold;
D O I
10.1063/5.0228020
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To improve the efficiency of photovoltaic systems, it is essential to obtain the parameters of photovoltaic cells through an identification process. However, due to the nonlinear and multimodal characteristics, accurately and reliably identifying the parameters of photovoltaic cells still remains a challenging task. In this paper, a hybrid of the imperialist competitive algorithm (ICA) and particle swarm optimization (PSO), ICA-PSO, is proposed to effectively identify the parameters of photovoltaic cells. The position updating strategy of PSO is adopted to replace the colony's position updating strategy in the ICA. The hybrid algorithm ICA-PSO integrates the multi-swarm search characteristic and the powerful exploration ability of PSO together, leading to an enhanced optimization performance. Experimental results of applying ICA-PSO to parameter identification of photovoltaic cells show that ICA-PSO can extract the parameters of photovoltaic cells with higher accuracy and reliability, thus outperforming many other methods presented in the literature.
引用
收藏
页数:11
相关论文
共 31 条
  • [1] Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution
    Abd El-Mageed, Amr A.
    Abohany, Amr A.
    Saad, Hatem M. H.
    Sallam, Karam M.
    [J]. APPLIED SOFT COMPUTING, 2023, 134
  • [2] The Arithmetic Optimization Algorithm
    Abualigah, Laith
    Diabat, Ali
    Mirjalili, Seyedali
    Elaziz, Mohamed Abd
    Gandomi, Amir H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
  • [3] Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier
    Ahmadi, Neda
    Akbarizadeh, Gholamreza
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (07) : 2267 - 2281
  • [4] Optimal Power Flow via Teaching-Learning-Studying-Based Optimization Algorithm
    Akbari, Ebrahim
    Ghasemi, Mojtaba
    Gil, Milad
    Rahimnejad, Abolfazl
    Gadsden, S. Andrew
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2022, 49 (6-7) : 584 - 601
  • [5] Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
  • [6] Parameter estimation of solar PV models with quantum-based avian navigation optimizer and Newton-Raphson method
    Ayyarao, Tummala S. L., V
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (06) : 1338 - 1356
  • [7] Solar photovoltaic model parameter identification using robust niching chimp optimization
    Bo, Qiuyu
    Cheng, Wuqun
    Khishe, Mohammad
    Mohammadi, Mokhtar
    Mohammed, Adil Hussein
    [J]. SOLAR ENERGY, 2022, 239 : 179 - 197
  • [8] Comprehensive Learning Particle Swarm Optimization Algorithm With Local Search for Multimodal Functions
    Cao, Yulian
    Zhang, Han
    Li, Wenfeng
    Zhou, Mengchu
    Zhang, Yu
    Chaovalitwongse, Wanpracha Art
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (04) : 718 - 731
  • [9] A COMPARATIVE-STUDY OF EXTRACTION METHODS FOR SOLAR-CELL MODEL PARAMETERS
    CHAN, DSH
    PHILLIPS, JR
    PHANG, JCH
    [J]. SOLID-STATE ELECTRONICS, 1986, 29 (03) : 329 - 337
  • [10] An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models
    Chen, Huiling
    Jiao, Shan
    Heidari, Ali Asghar
    Wang, Mingjing
    Chen, Xu
    Zhao, Xuehua
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 927 - 942