Using an artificial neural network as a rotor resistance estimator in the indirect vector control of an induction motor

被引:6
作者
Huerta González, Pedro Francisco [1 ]
Rodríguez Rivas, Jaime J. [2 ]
Torres Rodríguez, Ivone Cecilia [1 ]
机构
[1] Laboratorio de Ingeniería en Control Y Automatización, Escuela Superior de Ingeniería Mecánica Y Eléctrica (ESIME Zacatenco) del IPN, Ciudad de México
[2] Sección de Estudios de Postgrado e Investigación, Escuela Superior de Ingeniería Mecánica Y Eléctrica (ESIME Zacatenco) del IPN, Ciudad de México
关键词
Network layers - Fuzzy logic - Neurons - Induction motors - Vector control (Electric machinery);
D O I
10.1109/TLA.2008.4609915
中图分类号
学科分类号
摘要
This paper presents a rotor resistance estimator based on an artificial neural network (ANN) used in the indirect vector control (IVC) of an induction motor (IM). Attention is focused on the dynamic performance of ANN rotor estimator, which gives superior performance over the fuzzy logic based rotor estimator reported in technical literature. The simulation was done using a 1.5 HP induction motor. The same ANN rotor estimator was proved with other IM having different rated power. The use of the same ANN was possible because the scaling and descaling (normalization) of the input and output of ANN was property done for each motor. The ANN training was done offline using the Levenberg-Marquardt algorithm. The neuronal network is a three-layer network; the first layer has fourteen neurons (or nodes), the hidden layer has five neurons and the output layer has only one neuron because the unique output signal is the rotor resistance value. © Copyright 2010 IEEE - All Rights Reserved.
引用
收藏
页码:176 / 183
页数:7
相关论文
共 9 条
[1]  
Bose B.K., Modern Power Electronics and Ac Drives, (2002)
[2]  
Chee-Mun O., Dynamic Simulation of Electric Machinery, (1998)
[3]  
Matsuo T., Lipo T.A., A rotor parameter identification scheme for vector-controlled in induction motor drives, IEEE Trans. Ind. Appl.., IA-21, 4, pp. 624-632, (1985)
[4]  
Nordin K.B., Novotny D.W., Zinger D.S., The influence of motor parameter in feedforward field orientation drive systems, IEEE Trans. Ind. Appl., IA-21, 4, pp. 1009-1015, (1985)
[5]  
Koyama M., Yano I., Kamiyama I., Yano S., Microprocessor-based vector control system for induction motor drives with rotor time constant identification function, IEEE/IAS Conf. Record, pp. 564-569, (1985)
[6]  
Krishanan R., Bharadwaj A.S., A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems, IEEE Trans. on Power Elect., 6, 4, pp. 695-703, (1991)
[7]  
Krishnan R., Doran F.C., Study of parameter sensitivity in high performance inverter-fed induction motor drive systems, IEEE Trans. on Industry Appl., IA-23, 4, pp. 623-635, (1987)
[8]  
Kazmierkowski M.P., Krishnan R., Blaabjerg F., Control in Power Electronics, (2002)
[9]  
Ta-Kao M., Le-Huy H., Rotor resistance estimation using fuzzy logic for high performance induction motor drives, IECON'98, Proceeding of the 24th Annual Conference of IEEE, 1, pp. 303-308, (1998)