Compensation of fiber nonlinearity in 40×32 GBaud long-haul DWDM transmission

被引:0
作者
Hadjadji N. [1 ]
Hamdi R. [1 ]
机构
[1] Telecommunications Laboratory (LT), Université 8 Mai 1945 Guelma, BP-401, Guelma
来源
Hadjadji, N. (hadjadji.narimane@univ-guelma.dz) | 1600年 / Begell House Inc.卷 / 79期
关键词
Coherent detection; Coupled nonlinear Schrödinger equation; Digital signal processing; DWDM network; Nonlinearity compensation; Optical communication systems;
D O I
10.1615/telecomradeng.v79.i1.30
中图分类号
学科分类号
摘要
This paper investigates the performance of 5.12 Tbps Dense Wavelength-Division Multiplexing (DWDM) transmission using 40 channels with 128-Gbps Polarization Division Multiplexing-0.3 return to zero- quadrature phase-shift keying Quadrature Phase Shift Keying (PDM-0.3RZ-QPSK) modulation format. The prime advantage of the proposed work is improving the transmission performance by increasing the signal quality and the maximum reach. This is achieved by using the digital backpropagation algorithm as a nonlinearity compensation technique. The considerable nonlinear effects are the self-phase modulation (SPM), the cross-phase modulation (XPM). The maximum achievable transmission distances obtained at a bit error rate of 3.8×10-3 are 4800 km and 2400 km for the single and DWDM transmission, respectively. © 2020 by Begell House, Inc.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 19 条
  • [1] Alvarado A., Fehenberger T., Chen B., Willems F.M.J., Achievable information rates for fiber optics: Applications and computations, J. Lightwave Technol., 36, 2, pp. 424-439, (2018)
  • [2] Gurkin N.V., Mikhailov V., Nanii O.E., Novikov A.G., Et al., Experimental investigation of nonlinear noise in long-haul 100-Gb/s DP-QPSK communication systems using real-time DSP, Laser Physics Letters, 11, 9, (2014)
  • [3] Winzer P.J., Neilson D.T., Chraplyvy A.R., Fiber-optic transmission and networking: The previous 20 and the next 20 years, Opt. Express., 26, 18, pp. 24190-24239, (2018)
  • [4] Xu T., Karanov B., Shevchenko N.A., Lavery D., Et al., Spectral broadening effects in optical communication networks: Impact and security issue, Proc. Of 10th Intl. Advanced Infocomm Technol (ICAIT), Conf., 10, (2018)
  • [5] Agrawal P., Fiber-Optic Communication Systems, (2010)
  • [6] Amari A., Dobre O.A., Venkatesan R., Kumar O.S., Ciblat P., Jaouen Y., A survey on fiber nonlinearity compensation for 400 Gb/s and beyond optical communication systems, IEEE Communications Surveys & Tutorials, 19, 4, pp. 3097-3113, (2017)
  • [7] Xu T., Shevchenko N.A., Karanov B., Lavery D., Et al., Nonlinearity compensation and information rates in fully-loaded C-band optical fibre transmission systems, Proc. Of 43rd Intl. Euro Optical Communication (ECOC), Conf., 43, pp. 1-3, (2017)
  • [8] Gaiarin S., Perego A.M., da Silva E.P., da Ros F., Zibar D., Dual-polarization nonlinear Fourier transform-based optical communication system, Optica, 5, 3, pp. 263-270, (2018)
  • [9] Secondini M., Rommel S., Fresi F., Forestieri E., Et al., Coherent 100G nonlinear compensation with single-step digital backpropagation, Proc. Of Intl. Optical Network Design and Modeling (ONDM), Conf., 19, pp. 63-67, (2015)
  • [10] Hu H., Jopson R.M., Gnauck A.H., Randel S., Chandrasekhar S., Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations, Opt. Express., 25, 3, pp. 1618-1628, (2017)