Uncertainty estimation of rock shear strength parameters based on Gaussian process regression

被引:0
作者
Zhang Hua-jin [1 ]
Wu Shun-chuan [2 ]
Li Bing-lei [1 ]
Zhao Yu-song [1 ]
机构
[1] Fuzhou Univ, Zijin Sch Geol & Min, Fuzhou 350108, Fujian, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
rock; shear strength parameters; Gaussian process regression; uncertainty analysis; kernel function; COHESION;
D O I
10.16285/j.rsm.2023.0570
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
To address the issue of previous methods for estimating rock shear strength parameters lacking the ability to reflect and quantify uncertainties, a rock shear strength parameter uncertainty estimation method based on Gaussian process regression (GPR) is proposed for conducting probabilistic uncertainty analysis. Utilizing the rock strength parameter dataset, Gaussian process theory is employed to establish the mapping relationship between rock uniaxial compressive strength (UCS) and tensile strength (UTS) with shear strength parameters using various kernel functions. Through maximizing the logarithmic marginal likelihood function, the hyperparameter of the GPR model is optimized, and then the appropriate kernel function and GPR model are determined according to the prediction effect and uncertainty degree. The results indicate that under given UCS and UTS data, it is advisable to utilize the Matern kernel function for developing the cohesion GPR model and the rational quadratic kernel function for constructing the internal friction angle GPR model. Compared with conventional machine learning methods, the GPR method not only provides accurate predictions of rock shear strength parameters but also offers insights into the degree of prediction uncertainty, demonstrating strong scientific validity and interpretability, thereby validating the feasibility and efficacy of the GPR model.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 22 条
[1]   Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network [J].
Armaghani, Danial Jahed ;
Hajihassani, Mohsen ;
Bejarbaneh, Behnam Yazdani ;
Marto, Aminaton ;
Mohamad, Edy Tonnizam .
MEASUREMENT, 2014, 55 :487-498
[2]   Probability distributions of shotcrete parameters for reliability-based analyses of rock tunnel support [J].
Bjureland, William ;
Johansson, Fredrik ;
Sjolander, Andreas ;
Spross, Johan ;
Larsson, Stefan .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2019, 87 :15-26
[3]   Comprehensive statistical analysis of intact rock strength for reliability-based design [J].
Bozorgzadeh, Nezam ;
Escobar, Michael D. ;
Harrison, John P. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 106 :374-387
[4]   Assessing cohesion of the rocks proposing a new intelligent technique namely group method of data handling [J].
Chen, Wusi ;
Khandelwal, Manoj ;
Murlidhar, Bhatawdekar Ramesh ;
Dieu Tien Bui ;
Tahir, M. M. ;
Katebi, Javad .
ENGINEERING WITH COMPUTERS, 2020, 36 (02) :783-793
[5]   Bayesian data analysis to quantify the uncertainty of intact rock strength [J].
Contreras, Luis Fernando ;
Brown, Edwin T. ;
Ruest, Marc .
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (01) :11-31
[6]   Probabilistic analysis of shear strength of intact rock in triaxial compression: a case study of Jinping II project [J].
Deng, Jian ;
Li, Shaojun ;
Jiang, Quan ;
Chen, Bingrui .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2021, 111
[7]  
Duvenaud David, 2014, The kernel cookbook: advice on covariance functions
[8]   Evaluation of Shear Strength Parameters of Rocks by Preset Angle Shear, Direct Shear and Triaxial Compression Tests [J].
Gong, Fengqiang ;
Luo, Song ;
Lin, Ge ;
Li, Xibing .
ROCK MECHANICS AND ROCK ENGINEERING, 2020, 53 (05) :2505-2519
[9]   Utilization of the Brazilian test for estimating the uniaxial compressive strength and shear strength parameters [J].
Karaman, K. ;
Cihangir, F. ;
Ercikdi, B. ;
Kesimal, A. ;
Demirel, S. .
JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2015, 115 (03) :185-192
[10]   Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples [J].
Khandelwal, Manoj ;
Marto, Aminaton ;
Fatemi, Seyed Alireza ;
Ghoroqi, Mahyar ;
Armaghani, Danial Jahed ;
Singh, T. N. ;
Tabrizi, Omid .
ENGINEERING WITH COMPUTERS, 2018, 34 (02) :307-317