Can we rely on EUV emission to identify coronal waveguides?

被引:3
作者
Kohutova, P. [1 ,2 ]
Antolin, P. [3 ]
Szydlarski, M. [1 ,2 ]
Poirier, N. [1 ,2 ]
机构
[1] Univ Oslo, Rosseland Ctr Solar Phys, POB 1029, NO-0315 Oslo, Norway
[2] Univ Oslo, Inst Theoret Astrophys, POB 1029, NO-0315 Oslo, Norway
[3] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, England
关键词
magnetohydrodynamics (MHD); Sun: corona; Sun: magnetic fields; Sun: oscillations; TRANSVERSE OSCILLATIONS; KINK OSCILLATIONS; LOOPS; PROPAGATION; SEISMOLOGY;
D O I
10.1051/0004-6361/202451196
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Traditional models of coronal oscillations rely on a modelling of the coronal structures that support them as compact cylindrical waveguides. An alternative model of the structure of the corona has recently been proposed, in which the thin strand-like coronal loops, that are observed in the extreme-UV (EUV) emission are the result of the line-of-sight integration of warps in more complex coronal structures. This is referred to as the coronal veil model. Aims. We extend the implications of the coronal veil model of the solar corona to models of coronal oscillations. Methods. Using convection-zone-to-corona simulations with the radiation-magnetohydrodynamics (rMHD) code Bifrost, we analysed the structure of the self-consistently formed simulated corona. We focused on the spatial variability of the volumetric emissivity of the Fe IX 171.073 & Aring; EUV line and on the variability of the Alfv & eacute;n speed, which captures the density and magnetic structuring of the simulated corona. We traced features associated with large magnitudes of the Alfv & eacute;n speed gradient, which trap MHD waves and act as coronal waveguides. We searched for the correspondence with emitting regions, which appear as strand-like loops in the line-of-sight-integrated EUV emission. Results. We find that the cross sections of the waveguides bounded by large Alfv & eacute;n speed gradients become less circular and more distorted with increasing height in the solar atmosphere. The waveguide filling factors corresponding to the fraction of the waveguides filled with plasma that emits in the given EUV wavelength range from 0.09-0.44. This suggests that we can only observe a small fraction of the waveguide. Similarly, the projected waveguide widths in the plane of the sky are several times larger than the widths of the apparent loops that are observed in the EUV. Conclusions. We conclude that the coronal veil structure is independent of the model. As a result, we find a lack of straightforward correspondence between peaks in the integrated emission profile that constitute apparent coronal loops and regions of plasma bound by a large Alfv & eacute;n speed gradient that act as waveguides. Coronal waveguides cannot be reliably identified based on emission in a single EUV wavelength is not reliable in the simulated corona formed in convection-zone-to-corona models.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Extreme-ultraviolet fine structure and variability associated with coronal rain revealed by Solar Orbiter/EUI HRIEUV and SPICE⋆ [J].
Antolin, P. ;
Dolliou, A. ;
Auchere, F. ;
Chitta, L. P. ;
Parenti, S. ;
Berghmans, D. ;
Cuadrado, R. Aznar ;
Barczynski, K. ;
Gissot, S. ;
Harra, L. ;
Huang, Z. ;
Janvier, M. ;
Kraaikamp, E. ;
Long, D. M. ;
Mandal, S. ;
Peter, H. ;
Rodriguez, L. ;
Schuehle, U. ;
Smith, P. J. ;
Solanki, S. K. ;
Stegen, K. ;
Teriaca, L. ;
Verbeeck, C. ;
West, M. J. ;
Zhukov, A. N. ;
Appourchaux, T. ;
Aulanier, G. ;
Buchlin, E. ;
Delmotte, F. ;
Gilles, J. M. ;
Haberreiter, M. ;
Halain, J. -P. ;
Heerlein, K. ;
Hochedez, J. -F. ;
Gyo, M. ;
Poedts, S. ;
Rochus, P. .
ASTRONOMY & ASTROPHYSICS, 2023, 676
[2]   FINE STRAND-LIKE STRUCTURE IN THE SOLAR CORONA FROM MAGNETOHYDRODYNAMIC TRANSVERSE OSCILLATIONS [J].
Antolin, P. ;
Yokoyama, T. ;
Van Doorsselaere, T. .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 787 (02)
[3]   OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE [J].
Antolin, P. ;
van der Voort, L. Rouppe .
ASTROPHYSICAL JOURNAL, 2012, 745 (02)
[4]   Multi-Scale Variability of Coronal Loops Set by Thermal Non-Equilibrium and Instability as a Probe for Coronal Heating [J].
Antolin, Patrick ;
Froment, Clara .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
[5]   First perihelion of EUI on the Solar Orbiter mission [J].
Berghmans, D. ;
Antolin, P. ;
Auchere, F. ;
Cuadrado, R. Aznar ;
Barczynski, K. ;
Chitta, L. P. ;
Gissot, S. ;
Harra, L. ;
Huang, Z. ;
Janvier, M. ;
Kraaikamp, E. ;
Long, D. M. ;
Mandal, S. ;
Mierla, M. ;
Parenti, S. ;
Peter, H. ;
Rodriguez, L. ;
Schuehle, U. ;
Smith, P. J. ;
Solanki, S. K. ;
Stegen, K. ;
Teriaca, L. ;
Verbeeck, C. ;
West, M. J. ;
Zhukov, A. N. ;
Appourchaux, T. ;
Aulanier, G. ;
Buchlin, E. ;
Delmotte, F. ;
Gilles, J. M. ;
Haberreiter, M. ;
Halain, J. -P. ;
Heerlein, K. ;
Hochedez, J. -F. ;
Gyo, M. ;
Poedts, S. ;
Renotte, E. ;
Rochus, P. .
ASTRONOMY & ASTROPHYSICS, 2023, 675
[6]   A model for the formation of the active region corona driven by magnetic flux emergence [J].
Chen, F. ;
Peter, H. ;
Bingert, S. ;
Cheung, M. C. M. .
ASTRONOMY & ASTROPHYSICS, 2014, 564 :1-13
[7]   A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare [J].
Cheung, M. C. M. ;
Rempel, M. ;
Chintzoglou, G. ;
Chen, F. ;
Testa, P. ;
Martinez-Sykora, J. ;
Dalda, A. Sainz ;
DeRosa, M. L. ;
Malanushenko, A. ;
Hansteen, V ;
De Pontieu, B. ;
Carlsson, M. ;
Gudiksen, B. ;
McIntosh, S. W. .
NATURE ASTRONOMY, 2019, 3 (02) :160-166
[8]   CHIANTI-An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions [J].
Del Zanna, G. ;
Dere, K. P. ;
Young, P. R. ;
Landi, E. .
ASTROPHYSICAL JOURNAL, 2021, 909 (01)
[9]  
EDWIN PM, 1982, SOL PHYS, V76, P239, DOI 10.1007/BF00170986
[10]  
EDWIN PM, 1983, SOL PHYS, V88, P179, DOI 10.1007/BF00196186