A systematic review of system modeling and control strategy of proton exchange membrane fuel cell

被引:2
作者
Wang, Yujie [1 ]
Yang, Xingliang [1 ]
Sun, Zhengdong [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
来源
ENERGY REVIEWS | 2024年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; System modeling and Control; System modeling and control; Water and thermal management; AIR SUPPLY-SYSTEM; REAL-TIME CONTROL; FUZZY-PID CONTROL; WATER MANAGEMENT; THERMAL MANAGEMENT; MATHEMATICAL-MODEL; HYDROGEN PRESSURE; EMPIRICAL-EQUATION; PREDICTIVE CONTROL; HEAT MANAGEMENT;
D O I
10.1016/j.enrev.2023.100054
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The proton exchange membrane fuel cell, as a novel energy device, exhibits a wide array of potential applications. This paper offers a comprehensive review and discussion of modeling and control strategies for fuel cell systems. It commences with a concise introduction to the structure and principles of fuel cells. Subsequently, it outlines modeling approaches for various fuel cell subsystems, encompassing the fuel cell stack, air supply system, hydrogen supply system, thermal management system, and water management system. Following this, it conducts a comparative analysis and discussion of prevalent control strategies for the aforementioned subsystems. Lastly, the paper outlines future research trends and directions in the modeling and control strategies of fuel cells. The aim of this paper is to provide ideas and inspirations for the design and management of membrane fuel cell systems from control aspects.
引用
收藏
页数:15
相关论文
共 162 条
[1]   Transient air cooling thermal modeling of a PEM fuel cell [J].
Adzakpa, K. P. ;
Ramousse, J. ;
Dube, Y. ;
Akremi, H. ;
Agbossou, K. ;
Dostie, M. ;
Poulin, A. ;
Fournier, M. .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :164-176
[2]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[3]   Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions [J].
Antonio Salva, J. ;
Iranzo, Alfredo ;
Rosa, Felipe ;
Tapia, Elvira .
ENERGY, 2016, 101 :100-112
[4]   Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply [J].
Bai, Xingying ;
Luo, Lizhong ;
Huang, Bi ;
Jian, Qifei ;
Cheng, Zongyi .
ENERGY, 2022, 246
[5]   Effect of anisotropic electrical resistivity of gas diffusion layers (GDLs) on current density and temperature distribution in a Polymer Electrolyte Membrane (PEM) fuel cell [J].
Bapat, Chaitanya J. ;
Thynell, Stefan T. .
JOURNAL OF POWER SOURCES, 2008, 185 (01) :428-432
[6]   Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems [J].
Baroud, Zakaria ;
Benmiloud, Mohammed ;
Benalia, Atallah ;
Ocampo-Martinez, Carlos .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) :10435-10447
[7]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[8]   Modeling and simulation of proton exchange membrane fuel cell systems [J].
Beicha, Abdellah .
JOURNAL OF POWER SOURCES, 2012, 205 :335-339
[9]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[10]   Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates [J].
Chang, Huawei ;
Cai, Fengyang ;
Yu, Xianxian ;
Duan, Chen ;
Chan, Siew Hwa ;
Tu, Zhengkai .
ENERGY, 2023, 263