ON THE TURAN NUMBER OF EDGE BLOW-UPS OF CLIQUES

被引:0
作者
Song, Jialei [1 ,2 ]
Lu, Changhong [1 ,2 ]
Yuan, Long-Tu [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
edge blow-up; complete graph; Turan number;
D O I
10.1137/23M1623240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The p- blow-up of a given graph is obtained by replacing each edge by a clique of order p where the new vertices of the cliques are distinct. Liu and Yuan determined the extremal graphs for the 3-blow-ups of a triangle and the p- blow-ups of any complete graph with order at most p- 2, respectively. We determine the Tura'\n number for the p- blow-ups of a complete graph with order at least p- 1, completing the study of the extremal graphs for p- blow-ups of complete graphs.
引用
收藏
页码:2429 / 2446
页数:18
相关论文
共 13 条
[1]   The Turan number for the edge blow-up of trees: The missing case [J].
Chi, Cheng ;
Yuan, Long-Tu .
DISCRETE MATHEMATICS, 2023, 346 (06)
[2]  
ErdHos P., 1959, Acta Math. Acad. Sci. Hungar., V10, P337, DOI [10.1007/BF02024498, DOI 10.1007/BF02024498]
[3]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[4]  
Erdos P., 1968, Theory of Graphs, P77
[5]  
Erdos P., 1967, Theory of Graphs, P117
[6]  
Erdos P., 1962, Arch. Math. (Basel), V13, P122
[7]  
Liu H, 2013, ELECTRON J COMB, V20
[8]   The Erdos-Sos Conjecture for trees of diameter four [J].
McLennan, A .
JOURNAL OF GRAPH THEORY, 2005, 49 (04) :291-301
[9]   ON INDEPENDENT COMPLETE SUBGRAPHS IN A GRAPH [J].
MOON, JW .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01) :95-&
[10]  
Simonovits M., 1974, Discrete Mathematics, V7, P349, DOI 10.1016/0012-365X(74)90044-2