Neural networks for process control and optimization: Two industrial applications

被引:0
作者
Bloch, Gérard [1 ,2 ]
Denoeux, Thierry [3 ]
机构
[1] Ctr. de Rech. Automat. Nancy (CRAN), UMR CNRS 7039, Vandoeuvre
[2] Ecl. Sup. Sci. Technol. l'Ing. N., Univ. Henri Poincaré
[3] Univ. de Technol. de Compiegne, Compiegne
关键词
Computer modeling and simulation; Control; Drinking water treatment; Neural networks; Optimization; Steel industry;
D O I
10.1016/s0019-0578(07)60112-8
中图分类号
学科分类号
摘要
The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned. ©2003 ISA-The Instrumentation, Systems, and Automation Society.
引用
收藏
页码:39 / 51
页数:12
相关论文
共 39 条
[1]  
Chen S., Billings S., Int. J. Control, 56, pp. 319-346, (1992)
[2]  
Sjoberg J., Et al., Automatica, 31, pp. 1691-1724, (1995)
[3]  
Narendra K.S., Parthasarathy K., IEEE Trans. Neural Netw., 1, pp. 4-27, (1990)
[4]  
Hunt K., Sbarbaro D., Sbikowski R., Gawthrop P.J., Automatica, 28, pp. 1083-1112, (1992)
[5]  
Poggio T., Girosi F., Proc. IEEE, 78, pp. 1481-1497, (1990)
[6]  
Ljung L., System Identification: Theory for the User, 2nd Ed., (1999)
[7]  
Norgaard M., System Identification and Control with Neural Networks, (1996)
[8]  
Sjoberg J., Ngia L.S.H., Nonlinear Modeling-Advanced Black-Box Techniques, pp. 1-28, (1998)
[9]  
Battiti R., IEEE Trans. Neural Netw., 5, pp. 537-550, (1994)
[10]  
He X., Assada H., American Control Conference, (1993)