Optimized physics-informed neural network for analyzing the radiative-convective thermal performance of an inclined wavy porous fin

被引:0
|
作者
Chandan, K. [1 ]
Srilatha, Pudhari [2 ]
Karthik, K. [3 ]
Raghunandan, M. E. [4 ]
Nagaraja, K. V. [5 ]
Gopalakrishnan, E. A. [1 ]
Kumar, R. S. Varun [6 ]
Gamaoun, Fehmi [7 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Artificial Intelligence, Bengaluru, Karnataka, India
[2] Inst Aeronaut Engn, Dept Math, Hyderabad, India
[3] Davangere Univ, Dept Studies Math, Davangere 577002, Karnataka, India
[4] Monash Univ Malaysia, Sch Engn, Dept Civil Engn, Monash Climate Resilient Infrastruct Res Hub M CRI, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul, Malaysia
[5] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Computat Sci Lab, Bengaluru, Karnataka, India
[6] Sunway Univ, Sch Math Sci, Dept Pure & Appl Math, Petaling Jaya 47500, Selangor Darul, Malaysia
[7] King Khalid Univ, Coll Engn, Dept Mech Engn, Abha 61421, Saudi Arabia
关键词
Heat transfer; Porous fin; Wavy fin; Inclined fin; Internal heat generation; PINN;
D O I
10.1016/j.csite.2024.105423
中图分类号
O414.1 [热力学];
学科分类号
摘要
The significance of radiation and inclination on the temperature dispersion of the wavy porous fin has been addressed in the present study. Also, the influence of convection and internal heat generation on the thermal dissipation of the inclined wavy porous fin (IWPF) is examined. The pertinent temperature expression of the fin is represented using basic laws, and this equation is reduced to a dimensionless form via dimensionless variables. Additionally, a mix-encoding Genetic algorithm and Particle swarm optimization technique is shown to optimize the network hyperparameters. This resolves the issue of arbitrarily identifying the Physics informed neural networks (PINN's) ideal network and successfully limits local optimization during the training phase. Further, the equation is also resolved numerically using Runge-Kutta Fehlberg's fourthfifth (RKF-45) scheme, and the solutions are subsequently used to verify the PINN model's applicability. The temperature results estimated by PINN and their associated RKF-45 values correlate excellently, which indicates the accuracy of the applied PINN model. The obtained findings denote that reduced measures of convective-conductive variables stimulate the IWPF's thermal distribution. An inclination angle of the fin has a significant impact on the thermal variation of the IWPF.
引用
收藏
页数:16
相关论文
共 13 条
  • [1] Predicting the thermal distribution in a convective wavy fin using a novel training physics-informed neural network method
    Chandan, K.
    Saadeh, Rania
    Qazza, Ahmad
    Karthik, K.
    Varun Kumar, R. S.
    Kumar, R. Naveen
    Khan, Umair
    Masmoudi, Atef
    Abdou, M. Modather M.
    Ojok, Walter
    Kumar, Raman
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [2] Predicting the thermal distribution in a convective wavy fin using a novel training physics-informed neural network method
    K. Chandan
    Rania Saadeh
    Ahmad Qazza
    K. Karthik
    R. S. Varun Kumar
    R. Naveen Kumar
    Umair Khan
    Atef Masmoudi
    M. Modather M. Abdou
    Walter Ojok
    Raman Kumar
    Scientific Reports, 14
  • [3] Predictive modeling through physics-informed neural networks for analyzing the thermal distribution in the partially wetted wavy fin
    Karthik, Kalachar
    Sowmya, Ganeshappa
    Sharma, Naman
    Kumar, Chandan
    Shashikala, Varun Kumar Ravikumar
    Shivaprakash, Siddesh Alur
    Muhammad, Taseer
    Gill, Harjot Singh
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (08):
  • [4] Evolutionary Computing for the Radiative-Convective Heat Transfer of a Wetted Wavy Fin Using a Genetic Algorithm-Based Neural Network
    Poornima, B. S.
    Sarris, Ioannis E.
    Chandan, K.
    Nagaraja, K. V.
    Kumar, R. S. Varun
    Ben Ahmed, Samia
    BIOMIMETICS, 2023, 8 (08)
  • [5] A physics-informed machine learning prediction for thermal analysis in a convective-radiative concave fin with periodic boundary conditions
    Kumar, Chandan
    Srilatha, Pudhari
    Karthik, Kalachar
    Somashekar, Channaiah
    Nagaraja, Kallur Venkat
    Kumar, Ravikumar Shashikala Varun
    Shah, Nehad Ali
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (07):
  • [6] Transient Thermal Distribution in a Wavy Fin Using Finite Difference Approximation Based Physics Informed Neural Network
    Alzaid, Sara Salem
    Alkahtani, Badr Saad T.
    Chandan, Kumar
    Kumar, Ravikumar Shashikala Varun
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (03): : 2555 - 2574
  • [7] Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition: application of the clique polynomial method and physics-informed neural networks
    Chandan, K.
    Karthik, K.
    Nagaraja, K. V.
    Prasannakumara, B. C.
    Varun Kumar, R. S.
    Muhammad, T.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (09) : 1613 - 1632
  • [8] Stochastic Levenberg-Marquardt Neural Network Implementation for Analyzing the Convective Heat Transfer in a Wavy Fin
    Kumar, R. S. Varun
    Alsulami, M. D.
    Sarris, I. E.
    Sowmya, G.
    Gamaoun, Fehmi
    MATHEMATICS, 2023, 11 (10)
  • [9] Combined Impacts of Fin Surface Inclination and Magnetohydrodynamics on the Thermal Performance of a Convective-Radiative Porous Fin
    Sobamowo, Gbeminiyi M.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (03): : 940 - 948
  • [10] Analysis of MHD Flow With Convective Boundary Conditions Over a Permeable Stretching Surface Using a Physics-Informed Neural Network
    Dutta, Bhaskar Jyoti
    Kalita, Bhaskar
    Saharia, Gautam K.
    HEAT TRANSFER, 2025,