AN ENERGY-BASED DISCONTINUOUS GALERKIN METHOD FOR THE NONLINEAR SCHRO"\DINGER EQUATION WITH WAVE OPERATOR
被引:0
作者:
Ren, Kui
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Ren, Kui
[1
]
Zhang, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
Rice Univ, Ken Kennedy Inst, Houston, TX 77005 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Zhang, Lu
[2
,3
]
Zhou, Yin
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Zhou, Yin
[1
]
机构:
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
[3] Rice Univ, Ken Kennedy Inst, Houston, TX 77005 USA
This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schro"\dinger equation with the wave operator. The focus of the study is on the energy- conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a weak formulation for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the L 2 error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a special weak formulation, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Numerical experiments were performed to demonstrate the optimal convergence of the scheme in the L 2 norm. These experiments involved specific choices of numerical fluxes combined with specific choices of approximation spaces.
机构:
Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Math, E Lansing, MI 48824 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Appelo, Daniel
;
Zhang, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Zhang, Lu
;
论文数: 引用数:
h-index:
机构:
Hagstrom, Thomas
;
Li, Fengyan
论文数: 0引用数: 0
h-index: 0
机构:
Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
机构:
Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Math, E Lansing, MI 48824 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Appelo, Daniel
;
Zhang, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Zhang, Lu
;
论文数: 引用数:
h-index:
机构:
Hagstrom, Thomas
;
Li, Fengyan
论文数: 0引用数: 0
h-index: 0
机构:
Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USAMichigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA