Comparative study of type-2 fuzzy Particle swarm, Bee Colony and Bat Algorithms in optimization of fuzzy controllers

被引:44
|
作者
Olivas F. [1 ]
Amador-Angulo L. [1 ]
Perez J. [1 ]
Caraveo C. [1 ]
Valdez F. [1 ]
Castillo O. [1 ]
机构
[1] Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana
来源
Castillo, Oscar (ocastillo@tectijuana.mx) | 1600年 / MDPI AG卷 / 10期
关键词
Bio-inspired algorithms; Footprint uncertainty; Fuzzy controller; Interval type-2 fuzzy logic;
D O I
10.3390/a10030101
中图分类号
学科分类号
摘要
In this paper, a comparison among Particle swarm optimization (PSO), Bee Colony Optimization (BCO) and the Bat Algorithm (BA) is presented. In addition, a modification to the main parameters of each algorithm through an interval type-2 fuzzy logic system is presented. The main aim of using interval type-2 fuzzy systems is providing dynamic parameter adaptation to the algorithms. These algorithms (original and modified versions) are compared with the design of fuzzy systems used for controlling the trajectory of an autonomous mobile robot. Simulation results reveal that PSO algorithm outperforms the results of the BCO and BA algorithms. © 2017 by the authors.
引用
收藏
相关论文
共 50 条
  • [41] Comparative Study between Fuzzy Logic and Interval Type-2 Fuzzy Logic Controllers for the Trajectory Planning of a Mobile Robot
    Kasmi, Boucetta
    Hassam, Abdelouaheb
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (02) : 7011 - 7017
  • [42] A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation
    Valdez, Fevrier
    SOFT COMPUTING, 2020, 24 (01) : 215 - 226
  • [43] A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation
    Fevrier Valdez
    Soft Computing, 2020, 24 : 215 - 226
  • [44] A Smart Sugeno Interval Type-2 Fuzzy Bee Colony Optimization to Stable an Autonomous Mobile Robot Controller
    Amador-Angulo, Leticia
    Castillo, Oscar
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 580 - 588
  • [45] Design and Verification of an Interval Type-2 Fuzzy Neural Network Based on Improved Particle Swarm Optimization
    Lin, Cheng-Jian
    Jeng, Shiou-Yun
    Lin, Hsueh-Yi
    Yu, Cheng-Yi
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [46] Interval Type-2 Fuzzy Vendor Managed Inventory System and Its Solution with Particle Swarm Optimization
    Zubair Ashraf
    Deepika Malhotra
    Pranab K. Muhuri
    Q. M. Danish Lohani
    International Journal of Fuzzy Systems, 2021, 23 : 2080 - 2105
  • [47] Interval Type-2 Fuzzy Vendor Managed Inventory System and Its Solution with Particle Swarm Optimization
    Ashraf, Zubair
    Malhotra, Deepika
    Muhuri, Pranab K.
    Lohani, Q. M. Danish
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2080 - 2105
  • [48] C plus plus Library for Fuzzy Type-2 Controller Design With Particle Swarm Optimization Tuning
    Serrano, Fernando E.
    Flores, Marco A.
    2015 IEEE THIRTY FIFTH CENTRAL AMERICAN AND PANAMA CONVENTION (CONCAPAN XXXV), 2015,
  • [49] Comparison between Artificial Bee Colony and Particle Swarm Optimization Algorithms in the tuning of PSS and UPFC-POD Controllers
    Martins, Luis Fabiano B.
    Gamino, Bruno R.
    de Araujo, Percival B.
    Fortes, Elenilson de V.
    Miotto, Ednei L.
    2016 12TH IEEE/IAS INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2016,
  • [50] FUZZY REASONING MODELS AND ALGORITHMS ON TYPE-2 FUZZY SETS
    Wang, Tao
    Chen, Yang
    Tong, Shaocheng
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (10): : 2451 - 2460