Comparative study of type-2 fuzzy Particle swarm, Bee Colony and Bat Algorithms in optimization of fuzzy controllers

被引:44
|
作者
Olivas F. [1 ]
Amador-Angulo L. [1 ]
Perez J. [1 ]
Caraveo C. [1 ]
Valdez F. [1 ]
Castillo O. [1 ]
机构
[1] Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana
来源
Castillo, Oscar (ocastillo@tectijuana.mx) | 1600年 / MDPI AG卷 / 10期
关键词
Bio-inspired algorithms; Footprint uncertainty; Fuzzy controller; Interval type-2 fuzzy logic;
D O I
10.3390/a10030101
中图分类号
学科分类号
摘要
In this paper, a comparison among Particle swarm optimization (PSO), Bee Colony Optimization (BCO) and the Bat Algorithm (BA) is presented. In addition, a modification to the main parameters of each algorithm through an interval type-2 fuzzy logic system is presented. The main aim of using interval type-2 fuzzy systems is providing dynamic parameter adaptation to the algorithms. These algorithms (original and modified versions) are compared with the design of fuzzy systems used for controlling the trajectory of an autonomous mobile robot. Simulation results reveal that PSO algorithm outperforms the results of the BCO and BA algorithms. © 2017 by the authors.
引用
收藏
相关论文
共 50 条
  • [21] Comparative Study in Fuzzy Controller Optimization Using Bee Colony, Differential Evolution, and Harmony Search Algorithms
    Castillo, Oscar
    Valdez, Fevrier
    Soria, Jose
    Amador-Angulo, Leticia
    Ochoa, Patricia
    Peraza, Cinthia
    ALGORITHMS, 2019, 12 (01)
  • [22] Fuzzy clustering for missing data based on particle swarm optimization and artificial bee colony algorithm
    Liu, C.Y. (lcy810204@163.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (44):
  • [23] A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design
    Castillo, Oscar
    Amador-Angulo, Leticia
    INFORMATION SCIENCES, 2018, 460 : 476 - 496
  • [24] A Fuzzy Bee Colony Optimization Algorithm Using an Interval Type-2 Fuzzy Logic System for Trajectory Control of a Mobile Robot
    Amador-Angulo, Leticia
    Castillo, Oscar
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 460 - 471
  • [25] Ant Colony Optimization of type-2 Fuzzy Helicopter Controller
    Rezoug, A.
    Achour, Z.
    Hamerlain, M.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 1548 - 1553
  • [26] Optimization of type-2 Fuzzy Weight for Neural Network using Genetic Algorithm and Particle Swarm Optimization
    Gaxiola, Fernando
    Melin, Patricia
    Valdez, Fevrier
    Castillo, Oscar
    2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 22 - 28
  • [27] Particle Swarm Optimization for Solving a Class of Type-1 and Type-2 Fuzzy Nonlinear Equations
    Sadiqbatcha, Sheriff
    Jafarzadeh, Saeed
    Ampatzidis, Yiannis
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [28] PARTICLE SWARM OPTIMIZATION FOR SOLVING A CLASS OF TYPE-1 AND TYPE-2 FUZZY NONLINEAR EQUATIONS
    Sadiqbatcha, Sheriff
    Jafarzadeh, Saeed
    Ampatzidis, Yiannis
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2018, 8 (02) : 103 - 110
  • [29] Evolutionary Interval Type-2 Fuzzy Systems Using Continuous Ant Colony Optimization Algorithms
    Juang, Chia-Feng
    Hung, Chi-Wei
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 26 - 31
  • [30] Artificial Bee Colony Optimization of Interval Type-2 Fuzzy Extreme Learning System for Chaotic Data
    Hassan, Saima
    Jaafar, Jafreezal
    Khanesar, Mojtaba A.
    Khosravi, Abbas
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 334 - 339