Effects of magnetic field on the optical rectification in a cylindrical quantum dot

被引:1
作者
Portacio A.A. [1 ]
Jiménez A.F. [1 ]
Urango M.D.P. [2 ]
机构
[1] Departamento de Matemáticas Y Física, Facultad de Ciencias Básicas E Ingenierías, Universidad de Los Llanos, Km 12 vía puerto López, Villavicencio, Meta
[2] Departamento de Biología Y Química, Facultad de Ciencias Básicas E Ingenierías, Universidad de Los Llanos, Km 12 vía puerto López, Villavicencio, Meta
来源
Portacio, Alfonso A. (aportacio@unillanos.edu.co) | 1600年 / Centro de Informacion Tecnologica卷 / 27期
关键词
Cylindrical quantum dot; Density matrix; Magnetic field; Optical rectification;
D O I
10.4067/S0718-07642016000600028
中图分类号
学科分类号
摘要
A theoretical study on the nonlinear optical rectification in a cylindrical quantum dot (CQD) in the presence of a uniform magnetic field by using the density matrix formalism and a perturbation method is presented. The energy levels and wave functions of an electron in the CQD were obtained by solving the timeindependent Schrödinger equation within the effective mass approximation. Numerical calculations are performed for a CQD of the type GaAs/AlGaAs. It was found that the increase in the dimensions of CQD and/or the magnetic field intensity cause an increase on the resonance peak intensity and a shift to lower energies regions (red shift). The physical reason for this behavior is attributed to the quantum confinement effect generated by the variation of the magnetic field strength and of the size of the nanostructure.
引用
收藏
页码:285 / 290
页数:5
相关论文
共 50 条
  • [21] The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field
    Liu, Xin
    Zou, LiLi
    Liu, Chenglin
    Zhang, Zhi-Hai
    Yuan, Jian-Hui
    OPTICAL MATERIALS, 2016, 53 : 218 - 223
  • [22] Optical absorption of an asymmetric quantum dot in the presence of an uniform magnetic field
    Li, Xuechao
    Zhang, Chaojin
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 60 : 40 - 46
  • [23] Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential
    D. A. Baghdasaryan
    E. S. Hakobyan
    D. B. Hayrapetyan
    H. A. Sarkisyan
    E. M. Kazaryan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2019, 54 : 46 - 56
  • [24] Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential
    Baghdasaryan, D. A.
    Hakobyan, E. S.
    Hayrapetyan, D. B.
    Sarkisyan, H. A.
    Kazaryan, E. M.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (01) : 46 - 56
  • [25] Nonlinear Optical Rectification and Oscillator Strength in a Spherical Quantum Dot with Parabolic Confinement in the Presence of the Electric Field
    Kirak, Muharrem
    Yilmaz, Sait
    Temizer, Umut
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (02) : 165 - 169
  • [26] Optical rectification coefficients of cylindrical quantum dots: Rashba spin-orbit interaction effects
    Solaimani, M.
    Lavaei, L.
    Aleomraninejad, S. M. A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (09) : 1989 - 1993
  • [27] Optical rectification coefficient in an oxide quantum dot with different confinement potentials
    A. John Peter
    N. Karthikeyan
    Chang Woo Woo
    Optical and Quantum Electronics, 2018, 50
  • [28] Optical rectification coefficient in an oxide quantum dot with different confinement potentials
    Peter, A. John
    Karthikeyan, N.
    Woo, Chang Woo
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (06)
  • [29] Lateral electric field effects on quantum size confinement in cylindrical quantum dot under parabolic potential
    Safwan, S. A.
    Asmaa, A. S.
    El Meshed, Nagwa
    Hekmat, M. H.
    El-Sherbini, TH. M.
    Allam, S. H.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (05) : 606 - 614
  • [30] Effects of Magnetic Field on the Coherence Time of a Parabolic Quantum Dot Qubit
    Sun, Yong
    Ding, Zhao-Hua
    Xiao, Jing-Lin
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 177 (3-4) : 151 - 156