Dynamics of cosmological phase crossover during Bose-Einstein condensation of dark matter in Tsallis cosmology

被引:0
作者
Mondal, Subhra [1 ]
Choudhuri, Amitava [1 ]
机构
[1] Univ Burdwan, Dept Phys, Golapbag 713104, West Bengal, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 11期
关键词
LARGE-SCALE STRUCTURE; GENERALIZED 2ND LAW; DWARF GALAXIES; OBSERVATIONAL EVIDENCE; FRIEDMANN EQUATIONS; APPARENT HORIZON; GALACTIC HALO; CARDY FORMULA; 1ST LAW; THERMODYNAMICS;
D O I
10.1140/epjc/s10052-024-13567-y
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
During the cosmic evolution process, as the temperature of a cosmological boson gas falls below a certain threshold, a Bose-Einstein condensation process can occur at various points throughout the cosmic history of the Universe. In this model, dark matter, conceptualized as a non-relativistic, Newtonian gravitational condensate is governed by the Gross-Pitaevskii-Poisson system. In our present study, we investigate the Bose-Einstein condensation process of bosonic DM by treating it as an approximate first-order phase transition within a modified cosmological framework, known as Tsallis cosmology. We examine the evolution of relevant physical quantities characterizing the evolution dynamics of the Universe, including energy density, temperature, redshift, scale factor, Hubble parameter, and dimensionless deceleration parameter before, during, and following the Bose-Einstein condensation phase transition takes place. Additionally, we especially investigate the specific era of the evolution of the Universe characterized by a mixture of normal and condensate phases of dark matter. We analyze the behavior of temporal evolution of an important time-dependent parameter, called the condensate dark matter fraction throughout the condensation process and find the time duration of condensation of dark matter in the Tsallis cosmological model. We see that the presence of Bose-Einstein condensate dark matter in the framework of Tsallis-modified cosmology significantly alters the cosmological evolution of the Universe as compared to the standard model of cosmology. We also find for a typical value of Tsallis non-extensive parameter beta=0.35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =0.35$$\end{document}, the model could explain an accelerated Universe without invoking any additional energy component and solve the age problem of our Universe.
引用
收藏
页数:23
相关论文
共 215 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]  
Abdullah M., arXiv
[3]   Elucidating.CDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy [J].
Addison, G. E. ;
Watts, D. J. ;
Bennett, C. L. ;
Halpern, M. ;
Hinshaw, G. ;
Weiland, J. L. .
ASTROPHYSICAL JOURNAL, 2018, 853 (02)
[4]   Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe [J].
Akbar, M. ;
Cai, Rong-Gen .
PHYSICAL REVIEW D, 2007, 75 (08)
[5]   Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics [J].
Akbar, M ;
Cai, RG .
PHYSICS LETTERS B, 2006, 635 (01) :7-10
[6]   Planck 2018 results: VII. Isotropy and statistics of the CMB [J].
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Casaponsa, B. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. ;
Finelli, F. ;
Frailis, M. ;
Fraisse, A. A. ;
Franceschi, E. ;
Frolov, A. ;
Galeotta, S. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[7]  
Amendola L., 2010, DARK ENERGY THEORY O, DOI DOI 10.1017/CBO9780511750823
[8]   Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals [J].
Amorisco, N. C. ;
Evans, N. W. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (01) :184-196
[9]   Dissecting the H0 and S8 tensions with Planck [J].
Anchordoqui, Luis A. ;
Di Valentino, Eleonora ;
Pan, Supriya ;
Yang, Weiqiang .
JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2021, 32 :28-64
[10]   Theory of the weakly interacting Bose gas [J].
Andersen, JO .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :599-639