Recent advancements in integrating CO2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO2 utilization

被引:1
作者
Zhang, Ruoyu [1 ]
Xie, Zhenwei [2 ]
Ge, Qingfeng [3 ]
Zhu, Xinli [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
[2] China Kunlun Contracting & Engn Corp, Beijing 100037, Peoples R China
[3] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
基金
中国国家自然科学基金;
关键词
Integrated CO(2 )capture and conversion; Flue gas; Direct air capture; Dual-functional materials; Methanation; Reverse water gas shift reaction; Methanol formation; Dry reforming; DUAL-FUNCTION MATERIALS; CARBON-DIOXIDE CAPTURE; POWER-TO-METHANE; COPPER CATALYST; SELECTIVE CO2; HYDROGENATION; ADSORBENTS; SHIFT; NI; REDUCTION;
D O I
10.1016/j.jcou.2024.102973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capturing CO2 and converting it into valuable chemicals and fuels have been regarded as a pivotal strategy in addressing the environmental challenges of ever-growing CO2 emissions. Combining CO2 capture and conversion through material or process integration can eliminate the energy-intensive steps such as separation, compression, and transportation across a wide range of space and temperatures. The flue gas at high temperatures > 300 degrees C can be handled with dual-function materials consisting of sorbents and catalysts. The dual-function materials combine CO2 capture and conversion through material integration, converting CO2 with reactions such as methanation, reverse water-gas shift, dry reforming of CH4, and oxidative dehydrogenation of propane. On the other hand, capturing CO2 from air directly requires a long time to collect enough CO2 for the subsequent conversion reaction. Consequently, direct air capture will likely combine with the conversion reactions in stepwise operations. The low latent heat in CO2 from direct air capture makes it more suitable for reactions at a mild condition (< 250 degrees C), and stepwise operation allows the separate control of the capture and conversion conditions. Herein, we reviewed recent advancements in coupling CO2 capture from flue gas and ambient air with thermal catalytic conversion. We discussed the requirements for materials, reactor configuration, and process operation for capturing and converting CO2 from these sources and proposed that future research should focus on enhancing the efficiency, scalability, and sustainability of CO2 capture and conversion technologies and optimizing the process design.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Advances in hydrophobic physiadsorbents for CO2 capture from humid flue gas and direct air
    Goyal, Nitin
    Hu, Yi-bo
    Li, Fei
    Yuan, Baoling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362
  • [32] Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas
    Shi, Xiaoyang
    Lee, Gahyun Annie
    Liu, Shuohan
    Kim, Dongjae
    Alahmed, Ammar
    Jamal, Aqil
    Wang, Lei
    Park, Ah-Hyung Alissa
    MATERIALS TODAY, 2023, 65 : 207 - 226
  • [33] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [34] Aminopolymer Confined in Ethane-Silica Nanotubes for CO2 Capture from Ambient Air
    Liu, Lina
    Chen, Jian
    Tao, Lin
    Li, He
    Yang, Qihua
    CHEMNANOMAT, 2020, 6 (07) : 1096 - 1103
  • [35] Advancements in the Application of CO2 Capture and Utilization Technologies-A Comprehensive Review
    Nwabueze, Queendarlyn Adaobi
    Leggett, Smith
    FUELS, 2024, 5 (03): : 508 - 532
  • [36] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [37] CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
    Seipp, Charles A.
    Williams, Neil J.
    Kidder, Michelle K.
    Custelcean, Radu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (04) : 1042 - 1045
  • [38] Recent Advances in Catalyzed Conversion and Utilization of CO2
    Guo D.
    Ding H.
    Pan W.
    Zhou Q.
    Guo S.
    Ding C.
    Deng Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (24): : 7242 - 7252
  • [39] Advances in process intensification of direct air CO2 capture with chemical conversion
    Garcia-Bordeje, Enrique
    Gonzalez-Olmos, Rafael
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2024, 100
  • [40] Recent Progress in Integrated CO2 Capture and Conversion Process Using Dual Function Materials: A State-of-the-Art Review
    Chen, Jian
    Xu, Yongqing
    Liao, Peizhi
    Wang, Haiming
    Zhou, Hui
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 4