Multi-Temperature State-of-Charge Estimation of Lithium-Ion Batteries Based on Spatial Transformer Network

被引:0
|
作者
Cao, Yu [1 ]
Wen, Xin [1 ]
Liang, Hongyu [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 210016, Peoples R China
[2] Zhuhai Southern Intelligent Transportat Co Ltd, Zhuhai 519088, Peoples R China
关键词
lithium-ion batteries; multi-temperature; state-of-charge estimation; spatial transformer network; MANAGEMENT;
D O I
10.3390/en17205029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately estimating the state of charge of a lithium-ion battery plays an important role in managing the health of a battery and estimating its charging state. Traditional state-of-charge estimation methods encounter difficulties in processing the diverse temporal data sequences and predicting adaptive results. To address these problems, we propose a spatial transformer network (STN) for multi-temperature state-of-charge estimation of lithium-ion batteries. The proposed STN consists of a convolutional neural network with a temporal-spatial module and a long short-term memory transformer network, which together are able to efficiently capture the spatiotemporal features. To train the STN under multi-temperature conditions, denoising augmentation and attention prediction are proposed to enhance the model's generalizability within a unified framework. Experimental results show that the proposed method reduces the mean absolute error and root mean square error by 41% and 43%, respectively, compared with existing methods; in the semi-supervised setting, the respective reductions are 23% and 38%, indicating that effective extraction of the spatiotemporal features along with denoising augmentation is beneficial for estimating the state of charge and can promote the development of battery management systems using semi-supervised learning methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Temperature characterization based state-of-charge estimation for pouch lithium-ion battery
    Li, Xining
    Xiao, Lizhong
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF POWER SOURCES, 2022, 535
  • [22] Temperature characterization based state-of-charge estimation for pouch lithium-ion battery
    Li, Xining
    Xiao, Lizhong
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF POWER SOURCES, 2022, 535
  • [23] A State-of-Charge Estimation Method based on Bidirectional LSTM Networks for Lithium-ion Batteries
    Zhang, Zhen
    Xu, Ming
    Ma, Longhua
    Yu, Binchao
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 211 - 216
  • [24] A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM
    Ren, Xiaoqing
    Liu, Shulin
    Yu, Xiaodong
    Dong, Xia
    ENERGY, 2021, 234
  • [25] State-of-charge estimation method for lithium-ion batteries based on competitive SIR model
    Xu, Guimin
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [26] Evaluation of the Model-based State-of-Charge Estimation Methods for Lithium-ion Batteries
    Zhang, Yongzhi
    Xiong, Rui
    He, Hongwen
    2016 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2016,
  • [27] A novel convolutional informer network for deterministic and probabilistic state-of-charge estimation of lithium-ion batteries
    Zou, Runmin
    Duan, Yuxin
    Wang, Yun
    Pang, Jiameng
    Liu, Fulin
    Sheikh, Shakil R.
    JOURNAL OF ENERGY STORAGE, 2023, 57
  • [28] State-of-charge estimation method of lithium-ion batteries based on long-short term memory network
    Zhang, Qichang
    Liu, Bing
    Zhou, Fei
    Wang, Qianzhi
    Kong, Jizhou
    2018 INTERNATIONAL CONFERENCE ON AIR POLLUTION AND ENVIRONMENTAL ENGINEERING (APEE 2018), 2018, 208
  • [29] Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature
    Wang, Donghun
    Lee, Jonghyun
    Kim, Minchan
    Lee, Insoo
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (02): : 2025 - 2040
  • [30] State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
    Charkhgard, Mohammad
    Farrokhi, Mohammad
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4178 - 4187