The critical impact of the waveguide thickness on the optical and threshold behaviors of InGaN-based green laser diodes

被引:0
作者
Li S. [1 ]
Chen H. [1 ]
Lei M. [1 ]
Yu G. [2 ,3 ]
Meng L. [2 ,3 ]
Zong H. [2 ,3 ]
Jiang S. [2 ,3 ]
Fu J. [2 ,3 ]
Wen P. [4 ]
Khan M.S.A. [1 ]
Hu X. [1 ,2 ,3 ]
机构
[1] State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University
[2] Liuzhou Key Laboratory of Gallium Nitride Materials and Devices, Guangxi
[3] Guangxi Hurricane Chip Technology Co., Ltd, Liuzhou
[4] School of Physical Education, South China University of Technology, Guangzhou
来源
Optik | 2023年 / 289卷
基金
中国国家自然科学基金;
关键词
Anti-guiding effect; GaN; Laser diode; Substrate mode; Transfer matrix method;
D O I
10.1016/j.ijleo.2023.171258
中图分类号
学科分类号
摘要
We study the optical structures of green (520 nm) InGaN-based laser diodes (LDs) with the complex 1D transfer matrix method, in consideration of the anti-guiding effect and mode leakage into the substrate. Two characteristic thicknesses of the waveguide are found to play critical roles in the behavior of the LD threshold and the beam quality. When a minimum threshold is desired, there exists an optimal thickness (OT) of the waveguide, which is strongly affected by the index contrast of the structure and the anti-guiding factor of the active region. A proper waveguide thickness (WT) makes the structure more tolerant of the mode leakage and the anti-guiding effect. An intrinsic failure in the lasing mode emerges with improper WTs. When a complete elimination of the substrate mode is desired, the waveguide above a critical thickness (CT) is required. To compromise the threshold and the beam quality, an eclectic thickness, while a high composition in the waveguide is suggested. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 37 条
[31]  
Kawaguchi M., Imafuji O., Nozaki S., Hagino H., Takigawa S., Katayama T., Tanaka T., “Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure,” in J, (2016)
[32]  
Scheibenzuber W.G., Schwarz U.T., Lermer T., Lutgen S., Strauss U., Antiguiding factor of GaN-based laser diodes from UV to green, Appl. Phys. Lett., 97, 2, (2010)
[33]  
Laino V., Roemer F., Witzigmann B., Lauterbach C., Schwarz U.T., Rumbolz C., Schillgalies M.O., Furitsch M., Lell A., Harle V., Substrate modes of (Al,In)GaN semiconductor laser diodes on SiC and GaN substrates, IEEE J. Quantum Electron., 43, 1, pp. 16-24, (2007)
[34]  
Dong L., Yadav S.K., Ramprasad R., Alpay S.P., Band gap tuning in GaN through equibiaxial in-plane strains, Appl. Phys. Lett., 96, 20, (2010)
[35]  
Scheibenzuber W.G., Schwarz U.T., Fast self-heating in GaN-based laser diodes, Appl. Phys. Lett., 98, 18, (2011)
[36]  
Bulutay C., Turgut C.M., Zakhleniuk N.A., Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: full-band approach, Phys. Rev. B, 81, 15, (2010)
[37]  
Muziol G., Turski H., Siekacz M., Wolny P., Grzanka S., Grzanka E., Perlin P., Skierbiszewski C., Enhancement of optical confinement factor by InGaN waveguide in blue laser diodes grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Express, 8, 3, (2015)