Synthesis and characterization of graphene on copper foil via atmospheric pressure chemical vapor deposition method and its impact on electrical properties

被引:4
作者
Ding, Yun [1 ]
Liu, Zhiyong [1 ]
Zhou, Difan [1 ]
Cai, Chuanbing [1 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai Key Lab High Temp Supercond, 99 Shanghai Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
APCVD; Cu/GR composites; Carrier density; Carrier mobility; Electrical conductivity; RAMAN-SPECTROSCOPY; BILAYER GRAPHENE; GROWTH; CONDUCTIVITY; HARDNESS; DEFECTS; CU;
D O I
10.1016/j.carbon.2024.119640
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper, prized for its exceptional electrical conductivity, thermal conductivity, and mechanical strength, is a staple in electronic applications. The ongoing quest for enhanced performance in miniaturized technologies has led to exploring copper-graphene composites, particularly those integrating bilayer graphene (BLG). This study investigates the enhancement of electrical conductivity in copper through the incorporation of BLG via atmospheric pressure chemical vapor deposition (APCVD). The research highlights the APCVD method's ability to grow high-quality BLG on high-purity oxygen-free copper foil, demonstrating significant improvements in electrical properties. Detailed characterization reveal that the graphene growth process induces structural changes in the copper, promoting ideal crystallographic orientations and larger grain sizes. This process achieves nearly complete graphene coverage and results in a copper/graphene (Cu/GR) composite with minimal defects. The electrical conductivity of the Cu/GR composite significantly increased to 59.32 x 10(6) S center dot m(-1), a 7.83 % improvement over the pristine copper foil. This enhancement is attributed to the increased carrier density and mobility within the composite. These advancements suggest the potential of APCVD-grown graphene for various high-performance electronic applications, providing a promising pathway for further development and optimization of graphene-copper composites.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene [J].
Ago, Hiroki ;
Ogawa, Yui ;
Tsuji, Masaharu ;
Mizuno, Seigi ;
Hibino, Hiroki .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16) :2228-2236
[2]   High current limits in chemical vapor deposited graphene spintronic devices [J].
Belotcerkovtceva, Daria ;
Panda, J. ;
Ramu, M. ;
Sarkar, Tapati ;
Noumbe, Ulrich ;
Kamalakar, M. Venkata .
NANO RESEARCH, 2023, 16 (04) :4233-4239
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[5]   Putting High-Index Cu on the Map for High- Yield, Dry-Transferred CVD Graphene [J].
Burton, Oliver J. ;
Winter, Zachary ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph ;
Hofmann, Stephan .
ACS NANO, 2023, 17 (02) :1229-1238
[6]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[7]   Ultrahigh Electrical Conductivity of Graphene Embedded in Metals [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Yang, Li ;
Li, Shuaishuai ;
Xie, Yiqun ;
Guo, Qiang ;
Li, Zhiqiong ;
Adams, Horst ;
Gu, Jiajun ;
Fan, Tongxiang ;
Zhang, Xiaohui ;
Zhang, Di .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
[8]   A general way to manipulate electrical conductivity of graphene [J].
Chen, Liqing ;
Li, Nian ;
Yu, Xinling ;
Zhang, Shudong ;
Liu, Cui ;
Song, Yanping ;
Li, Zhao ;
Han, Shuai ;
Wang, Wenbo ;
Yang, Pengzhan ;
Hong, Na ;
Ali, Sarmad ;
Wang, Zhenyang .
CHEMICAL ENGINEERING JOURNAL, 2023, 462
[9]   Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations [J].
Cooper, Adam J. ;
Wilson, Neil R. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
CARBON, 2014, 66 :340-350
[10]   Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection [J].
Cui, Naiyuan ;
Wang, Fei ;
Ding, Hanyuan .
MATERIALS, 2020, 13 (07)