共 18 条
- [1] Karolczuk A., Macha E., A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials , International Journal of Fracture, 134, pp. 267-304, (2005)
- [2] Brown M.W., Miller K.J., A theory for fatigue failure under multiaxial stress-strain conditions , 187, pp. 745-755, (1973)
- [3] Wang C.H., Brown M.W., A path-independent parameter for fatigue under proportional and non-proportional loading , 16, pp. 1285-1298, (1993)
- [4] Shang D.G., Wang D.J., A new multiaxial fatigue damage model based on the critical plane approach , International Journal of Fatigue, 20, pp. 241-245, (1998)
- [5] Wang Y.Y., Yao W.X., A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading , International Journal of fatigue, 28, pp. 401-408, (2006)
- [6] Yang J., Li C., Xie S., Multiaxial fatigue life prediction method based on maximum damage critical plane , Journal of Aerospace Power, 26, 12, pp. 2783-2790, (2011)
- [7] Fatemi A., Socie D.F., A Critical plane approach to multiaxial fatigue damage including out of plane loading , 14, pp. 149-165, (1988)
- [8] Shukayev S., Deformation and life of titanium alloy BT9 under conditions of nonproportional low-cycle loading , 33, pp. 333-338, (2001)
- [9] Walat K., Kurek M., Ogonowski P., Et al., The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range , International Journal of Fatigue, 37, pp. 100-111, (2012)
- [10] Itoh T., Nakata T., Sakane M., Et al., Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths , Proceedings of Fifth International Conference Biaxial/Multiaxial Fatigue and Fracture, pp. 173-187, (1997)