Multimodal Locomotion and Dynamic Interaction of Hydrogel Microdisks at the Air-Water Interface under Magnetic and Light Stimuli

被引:0
|
作者
Cheng, Yifan [1 ]
Zhu, Shilu [2 ,3 ]
Ma, Hui [1 ]
Zhang, Shengting [4 ]
Wei, Kun [1 ]
Wu, Shiyu [1 ]
Tang, Yongkang [4 ]
Liu, Ping [5 ]
Luo, Tingting [1 ]
Liu, Guangli [1 ]
Yang, Runhuai [1 ,6 ]
机构
[1] Anhui Med Univ, 3D Printing & Tissue Engn Ctr, Sch Biomed Engn, Hefei 230032, Peoples R China
[2] Univ Sci & Technol China, Sch Biomed Engn, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou 215123, Jiangsu, Peoples R China
[4] Anhui Med Univ, Clin Coll 1, Hefei 230026, Anhui, Peoples R China
[5] Hefei Univ Technol, Sch Microelect, Hefei 230009, Peoples R China
[6] Anhui Med Univ, Chaohu Hosp, Chaohu 238000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogel microrobots; RMFs; NIR; multiphysicalfields; interaction; cooperation; MICROROBOT;
D O I
10.1021/acsami.4c12151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air-water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air-water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.
引用
收藏
页码:61633 / 61644
页数:12
相关论文
共 50 条
  • [21] Interaction of human erythrocyte catalase with air-water interface in cryoEM
    Chen, Shaoxia
    Li, Jade
    Vinothkumar, Kutti R.
    Henderson, Richard
    MICROSCOPY, 2022, 71 : i51 - i59
  • [22] Effects of lateral interaction on the adsorption of surfactants at the air-water interface
    Yehia, A
    Atia, AA
    Ateya, BG
    AFINIDAD, 1998, 55 (473) : 40 - 44
  • [23] STRUCTURAL REQUIREMENTS OF STEROLS FOR INTERACTION WITH LECITHIN AT AIR-WATER INTERFACE
    DEMEL, RA
    VANDEENE.LL
    BRUCKDORFER, KR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1972, 255 (01) : 311 - +
  • [24] Interaction of DPPC monolayer at air-water interface with hydrophobic ions
    Shapovalov, VL
    THIN SOLID FILMS, 1998, 327 : 599 - 602
  • [25] Interaction between polylysine monolayer and DNA at the air-water interface
    Niwa, M
    Morikawa, M
    Yagi, K
    Higashi, N
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2002, 30 (01) : 47 - 54
  • [26] Interaction of naringin and naringenin with DPPC monolayer at the air-water interface
    Souza, F. R.
    Fornasier, F.
    Souza, L. M. P.
    Penafiel, M. P.
    Nascimento, J. B.
    Malfatti-Gasperini, A. A.
    Pimentel, A. S.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 584
  • [27] Interaction of chitosan with cell membrane models at the air-water interface
    Pavinatto, Felippe J.
    Pavinatto, Adriana
    Caseli, Luciano
    dos Santos, David S., Jr.
    Nobre, Thatyane M.
    Zaniquelli, Maria E. D.
    Oliveira, Osvaldo N., Jr.
    BIOMACROMOLECULES, 2007, 8 (05) : 1633 - 1640
  • [28] Analyzing Visible Light Communication Through Air-Water Interface
    Islam, Md Shafiqul
    Younis, Mohamed F.
    IEEE ACCESS, 2019, 7 : 123830 - 123845
  • [29] Skipping under water: Buoyant sphere hydrodynamics at the air-water interface
    Kamoliddinov, Farrukh
    Vakarelski, Ivan U.
    Thoroddsen, Sigurdur T.
    Truscott, Tadd T.
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [30] Numerical analysis of an adsorption dynamic model at the air-water interface
    Copetti, M. I. M.
    Fernandez, J. R.
    Muniz, M. C.
    Nunez, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 82 - 93