Angular dependence of light trapping in nanophotonic thin-film solar cells

被引:0
作者
IEK5 - Photovoltaik, Forschungszentrum Juelich GmbH, Juelich [1 ]
D - 52425, Germany
不详 [2 ]
3001, Belgium
机构
[1] IEK5 - Photovoltaik, Forschungszentrum Juelich GmbH, Juelich
[2] IMEC V.z.w., Kapeldreef 75, Leuven
来源
Opt. Express | / 24卷 / A1575-A1588期
关键词
Nanophotonics - Quantum efficiency - Thin films - Waveguides - Silicon solar cells;
D O I
10.1364/OE.23.0A1575
中图分类号
学科分类号
摘要
The angular dependence of light-trapping in nanophotonic thin-film solar cells is inherent due to the wavelength-scale dimensions of the periodic nanopatterns. In this paper, we experimentally investigate the dependence of light coupling to waveguide modes for light trapping in a-Si:H solar cells deposited on nanopatterned back contacts. First, we accurately determine the spectral positions of individual waveguide modes in thin-film solar cells in external quantum efficiency and absorptance. Second, we demonstrate the strong angular dependence of this spectral position for our solar cells. Third, a moderate level of disorder is introduced to the initially periodic nanopattern of the back contacts. As a result, the angular dependence is reduced. Last, we experimentally compare this dependence on the angle of incidence for randomly textured, 2D periodically nanopatterned and 2D disordered back contacts in external quantum efficiency and short-circuit current density. © 2015 Optical Society of America.
引用
收藏
页码:A1575 / A1588
页数:13
相关论文
共 29 条
  • [1] Green M.A., Solar Cells - Operating Principles, Technology and System Applications, (1986)
  • [2] Muller J., Rech B., Springer J., Vanecek M., TCO and light trapping in silicon thin film solar cells, Sol. Energy, 77, 6, pp. 917-930, (2004)
  • [3] Kambe M., Takahashi A., Taneda N., Masumo K., Oyama T., Sato K., Fabrication of A-Si:H Solar cells on high haze SnO2:F thin films, 2008 33rd IEEE Photovoltaic Specialists Conference, pp. 1-4, (2008)
  • [4] Eisele C., Nebel C.E., Stutzmann M., Periodic light coupler gratings in amorphous thin film solar cells, J. Appl. Phys., 89, 12, (2001)
  • [5] Ferry V.E., Sweatlock L.A., Pacifici D., Atwater H.A., Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Lett., 8, 12, pp. 4391-4397, (2008)
  • [6] Biswas R., Bhattacharya J., Lewis B., Chakravarty N., Dalal V., Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector, Sol. Energy Mater. Sol. Cells, 94, 12, pp. 2337-2342, (2010)
  • [7] Catchpole K.R., Polman A., Plasmonic solar cells, Opt. Express, 16, 26, pp. 21793-21800, (2008)
  • [8] Paetzold U.W., Moulin E., Michaelis D., Bottler W., Wachter C., Hagemann V., Meier M., Carius R., Rau U., Plasmonic reflection grating back contacts for microcrystalline silicon solar cells, Appl. Phys. Lett., 99, 18, (2011)
  • [9] Soderstrom K., Haug F.-J., Escarre J., Cubero O., Ballif C., Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler, Appl. Phys. Lett., 96, 21, (2010)
  • [10] Ferry V.E., Verschuuren M.A., Li H.B.T., Verhagen E., Walters R.J., Schropp R.E.I., Atwater H.A., Polman A., Light trapping in ultrathin plasmonic solar cells, Opt. Express, 18, 2 S, pp. A237-A245, (2010)