共 42 条
- [1] Frank E.G., Procedures for detecting outlying observations in samples, Technometrics, 11, 1, pp. 1-21, (1969)
- [2] Esling P., Agon C., Time-series data mining, ACM Comput. Surv., 45, 1, pp. 1-34, (2012)
- [3] Carreno A., Inza I., Lozano J.A., Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework, Artif. Intell. Rev., 53, 5, pp. 3575-3594, (2020)
- [4] Choi K., Yi J., Park C., Yoon S., Deep learning for anomaly detection in time-series data: review, analysis, and guidelines, IEEE Access, (2021)
- [5] Braei M., Wagner S., Anomaly detection in univariate time-series: a survey on the state-of-the-art, arXiv preprint arXiv:2004.00433, (2020)
- [6] Chalapathy R., Chawla S., Deep learning for anomaly detection: a survey, arXiv preprint arXiv:1901.03407, (2019)
- [7] Blazquez-Garcia A., Conde A., Mori U., Lozano J.A., A review on outlier/anomaly detection in time series data, ACM Comput. Surv., 54, 3, pp. 1-33, (2021)
- [8] Pang G., Shen C., Cao L., Hengel A.V.D., Deep learning for anomaly detection: a review, ACM Comput. Surv., 54, 2, pp. 1-38, (2021)
- [9] Schmidl S., Wenig P., Papenbrock T., Anomaly detection in time series: a comprehensive evaluation, Proc. VLDB Endowment, 15, 9, pp. 1779-1797, (2022)
- [10] Kim S., Choi K., Choi H.-S., Lee B., Yoon S., Towards a rigorous evaluation of time-series anomaly detection, Proc. AAAI Conf. Artif. Intell., 36, pp. 7194-7201, (2022)