Rapid, Point-of-Care, Paper-Based Plasmonic Biosensor for Zika Virus Diagnosis

被引:44
作者
Jiang Q. [1 ]
Chandar Y.J. [2 ]
Cao S. [1 ]
Kharasch E.D. [3 ,4 ]
Singamaneni S. [1 ]
Morrissey J.J. [3 ]
机构
[1] Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, 63130, MO
[2] The Davidson Academy of Nevada, Reno, 89507, NV
[3] Department of Anesthesiology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, 63110, MO
[4] Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, 63110, MO
基金
美国国家科学基金会;
关键词
metal–organic framework; plasmonic sensor; point of care; resource limited settings; Zika virus detection;
D O I
10.1002/adbi.201700096
中图分类号
学科分类号
摘要
Zika virus (ZIKV) is an increasing global health challenge. There is an urgent need for rapid, low-cost, and accurate diagnostic tests that can be broadly distributed and applied in pandemic regions. Here, an innovative, adaptable, and rapidly deployable bioplasmonic paper-based device (BPD) is demonstrated for the detection of ZIKV infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM. BPD is based on ZIKV-NS1 protein as a capture element and gold nanorods as plasmonic nanotransducers. The BPD displays excellent sensitivity and selectivity to both anti-ZIKV-NS1 IgG and IgM in human serum. In addition, excellent stability of BPDs at room and even elevated temperature for one month is achieved by metal–organic framework (MOF)-based biopreservation. MOF-based preservation obviates the need for device refrigeration during transport and storage, thus enabling their use in point-of-care and resource-limited settings for ZIKV surveillance. Furthermore, the versatile design (interchangeable recognition element) of BPDs more generally enables their ready adaptation to diagnose other emerging infectious diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
相关论文
共 38 条
[21]  
Anker J.N., Hall W.P., Lyandres O., Shah N.C., Zhao J., Van Duyne R.P., Nat. Mater., 7, (2008)
[22]  
Mayer K.M., Hafner J.H., Chem. Rev., 111, (2011)
[23]  
Kathryn M.M., Feng H., Seunghyun L., Peter N., Jason H.H., Nanotechnology, 21, (2010)
[24]  
Bingham J.M., Anker J.N., Kreno L.E., Van Duyne R.P., J. Am. Chem. Soc., 132, (2010)
[25]  
Hall W.P., Modica J., Anker J., Lin Y., Mrksich M., Van Duyne R.P., Nano Lett., 11, (2011)
[26]  
Novo C., Funston A.M., Gooding A.K., Mulvaney P., J. Am. Chem. Soc., 131, (2009)
[27]  
Novo C., Funston A.M., Mulvaney P., Nat. Nano, 3, (2008)
[28]  
Tian L., Morrissey J.J., Kattumenu R., Gandra N., Kharasch E.D., Singamaneni S., Anal. Chem., 84, (2012)
[29]  
Tadepalli S., Kuang Z., Jiang Q., Liu K.-K., Fisher M.A., Morrissey J.J., Kharasch E.D., Slocik J.M., Naik R.R., Singamaneni S., Sci. Rep., 5, (2015)
[30]  
Tian L., Tadepalli S., Park S.H., Liu K.-K., Morrissey J.J., Kharasch E.D., Naik R.R., Singamaneni S., Biosens. Bioelectron., 59, (2014)