Quantifying the imaginarity of quantum states via Tsallis relative entropy

被引:12
作者
Xu, Jianwei [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
关键词
INFORMATION; MATRIX; NOISE;
D O I
10.1016/j.physleta.2024.130024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Imaginary numbers play a significant role in quantum mechanics. Recently, a rigorous resource theory for the imaginarity of quantum states were established, and several imaginarity measures were proposed. In this work, we propose a new imaginarity measure based on the Tsallis relative entropy. This imaginarity measure has explicit expression, and also, it is computable for bosonic Gaussian states.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification [J].
Abe, S .
PHYSICAL REVIEW A, 2003, 68 (03) :3
[2]   Monotonic decrease of the quantum nonadditive divergence by projective measurements [J].
Abe, S .
PHYSICS LETTERS A, 2003, 312 (5-6) :336-338
[3]   DENSITY-MATRIX ELEMENTS AND MOMENTS FOR GENERALIZED GAUSSIAN STATE FIELDS [J].
ADAM, G .
JOURNAL OF MODERN OPTICS, 1995, 42 (06) :1311-1328
[4]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[5]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[6]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[7]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[8]   Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states [J].
Boca, Madalina ;
Ghiu, Iulia ;
Marian, Paulina ;
Marian, Tudor A. .
PHYSICAL REVIEW A, 2009, 79 (01)
[9]   Information gain within nonextensive thermostatistics [J].
Borland, L ;
Plastino, AR ;
Tsallis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6490-6501
[10]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577