Analysis of thermoelectric properties and performance of Mg2Si/Ni tilted multilayer composite using finite element simulation

被引:0
作者
Itoh T. [1 ]
机构
[1] Dept. Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya
来源
Itoh, Takashi (itoh.takashi@material.nagoya-u.ac.jp) | 2017年 / Journal of the Japan Society of Powder and Powder Metallurgy, 15 Morimoto-cho Shimogamo, Sakyo-Ku Kyoto, Japan卷 / 64期
关键词
Fnite element simulation; Magnesium silicide; Nickel; Thermoelectric properties; Tilted multilayer composite;
D O I
10.2497/jjspm.64.501
中图分类号
学科分类号
摘要
Magnesium silicide (Mg2Si) is an n-type promising material for thermoelectric (TE) power generation using waste heat with temperature range of 300 to 600°C. Fabricating the multilayer composite of Mg2Si and metallic material is a useful method for overcoming the weak point in the mechanical property of the material and for making the anisotropic TE material. The transverse TE force is occurred by giving vertical temperature difference in the tilted anisotropic TE material (transverse TE effect). In this study, the Mg2Si/Ni multilayer composite was focused on for transforming the isotropic Mg2Si to the anisotropic TE material. The TE properties of the Mg2Si/Ni tilted multilayer composite were estimated using a finite element simulation. The influences of structural conditions (thickness ratio of Mg2Si layer and tilt angle) of the tilted multilayer composite on the TE properties were investigated. The TE properties could be related quantitatively with the structural conditions. The structural conditions existed in which the tilted multilayer composite had the power factor greater than Mg2Si. The optimum structural conditions giving the maximum TE performance were found out.
引用
收藏
页码:501 / 509
页数:8
相关论文
共 21 条
  • [1] Itoh T., Hagio K., Japanese Unexamined Patent Application Publication, (2012)
  • [2] Oto Y., Iida T., Sakamoto T., Miyahara R., Natsui A., Nishio K., Kogo Y., Hirayama N., Takanashi Y., Phys. Status Solidi, C, 10, pp. 1857-1861, (2013)
  • [3] Zhao J., Liu Z., Reid J., Takarabe K., Iida T., Wang B., Yoshiya U., Tse J.S., J. Mater. Chem. A, 3, pp. 19774-19782, (2015)
  • [4] Jiang G., Chen L., He J., Gao H., Du Z., Zhao X., Tritt T.M., Zhu T., Intermetallics, 32, pp. 312-328, (2013)
  • [5] Liua W., Yina K., Sua X., Lia H., Yana Y., Tanga X., Intermetallics, 32, pp. 352-361, (2013)
  • [6] Schmidt R.D., Fan X., Case E.D., Sarac P.B., J. Mater. Sci., 50, pp. 4034-4046, (2015)
  • [7] Zahner Th., Forg R., Lengfellner H., Appl. Phys. Lett., 73, pp. 1364-1366, (1998)
  • [8] Kyarad A., Lengfellner H., Appl. Phys. Lett., 85, pp. 5613-5615, (1998)
  • [9] Kyarad A., Lengfellner H., Appl. Phys. Lett., 89, (2006)
  • [10] Snarskii A.A., Bulat L.P., Thermoelectrics Handbook: Macro to Nano, pp. 1-11, (2006)