Subzonal pressure methods in Lagrangian algorithm of two-dimensional three-temperature radiation hydrodynamics

被引:0
作者
Dai, Zihuan [1 ]
Wu, Jiming [1 ]
Lin, Zhong [1 ]
Fu, Shangwu [1 ]
机构
[1] Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
来源
Jisuan Wuli/Chinese Journal of Computational Physics | 2010年 / 27卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:326 / 334
相关论文
共 50 条
[41]   Natural position of the head: review of two-dimensional and three-dimensional methods of recording [J].
Cassi, D. ;
De Biase, C. ;
Tonni, I. ;
Gandolfini, M. ;
Di Blasio, A. ;
Piancino, M. G. .
BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2016, 54 (03) :233-240
[42]   Radiotherapy for nasopharyngeal carcinoma - transition from two-dimensional to three-dimensional methods [J].
Teo, PML ;
Ma, BBY ;
Chan, ATC .
RADIOTHERAPY AND ONCOLOGY, 2004, 73 (02) :163-172
[43]   Comparative study of three methods for the simulation of two-dimensional photonic crystals [J].
Pissoort, D ;
Denecker, B ;
Bienstman, P ;
Olyslager, F ;
De Zutter, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (11) :2186-2195
[44]   Iterative Approach to Solving Boundary Integral Equations in the Two-Dimensional Vortex Methods of Computational Hydrodynamics [J].
Mikhailov E.A. ;
Marchevskii I.K. ;
Kuzmina K.S. .
Journal of Applied and Industrial Mathematics, 2019, 13 (4) :672-684
[45]   Limitations of the two-dimensional and three-dimensional proximal isovelocity surface area methods [J].
Tsarpalis, Konstantinos .
AMERICAN JOURNAL OF CARDIOLOGY, 2007, 100 (09) :1495-1496
[46]   Physical-constraints-preserving Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamics [J].
Ling, Dan ;
Duan, Junming ;
Tang, Huazhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 :507-543
[47]   A New Algorithm for Reconstructing Two-Dimensional Temperature Distribution by Ultrasonic Thermometry [J].
Shen, Xuehua ;
Xiong, Qingyu ;
Shi, Weiren ;
Liang, Shan ;
Shi, Xin ;
Wang, Kai .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[48]   A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics [J].
Kamm, J. R. ;
Shashkov, M. J. ;
Fung, J. ;
Harrison, A. K. ;
Canfield, T. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) :1311-1324
[49]   A Pressure Relaxation Closure Model for One-Dimensional, Two-Material Lagrangian Hydrodynamics Based on the Riemann Problem [J].
Kamm, James R. ;
Shashkov, Mikhail J. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (05) :927-976
[50]   Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics [J].
Vilar, Francois ;
Maire, Pierre-Henri ;
Abgrall, Remi .
COMPUTERS & FLUIDS, 2011, 46 (01) :498-504