Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh-Benard convection

被引:0
|
作者
Demou, Andreas D. [1 ]
Scapin, Nicolo [2 ]
Crialesi-Esposito, Marco [3 ]
Costa, Pedro [4 ,5 ]
Spiga, Filippo [6 ]
Brandt, Luca [2 ,7 ,8 ]
机构
[1] Cyprus Inst, Computat Based Sci & Technol Res Ctr, CY-2121 Nicosia, Cyprus
[2] Royal Inst Technol KTH, Dept Engn Mech, FLOW, SE-10044 Stockholm, Sweden
[3] Univ Modena & Reggio Emilia, DIEF, I-41125 Modena, Italy
[4] Univ Iceland, Fac Ind Engn Mech Engn & Comp Sci, Hjarcarhagi 6, IS-107 Reykjavik, Iceland
[5] Delft Univ Technol, Dept Proc & Energy, Leeghwaterstr 39, NL-2628 CB Delft, Netherlands
[6] NVIDIA Ltd, Cambridge CB24 6WZ, England
[7] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
[8] Politecn Torino, Dept Environm Land & Infrastruct Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
瑞典研究理事会;
关键词
Benard convection; plumes/thermals; multiphase flow; DIRECT NUMERICAL SIMULATIONS; THERMAL-CONVECTION; LAYERS;
D O I
10.1017/jfm.2024.805
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study presents direct numerical simulation results of two-layer Rayleigh-Benard convection, investigating the previously unexplored Rayleigh-Weber parameter space 10(6) <= Ra <= 10(8) and 10(2) <= We <= 10(3). Global properties, such as the Nusselt and Reynolds numbers, are compared against the extended Grossmann-Lohse theory for two fluid layers, confirming a weak Weber number dependence for all global quantities and considerably larger Reynolds numbers in the lighter fluid. Statistics of the flow reveal that the interface fluctuates more intensely for larger Weber and smaller Rayleigh numbers, something also reflected in the increased temperature root mean square values next to the interface. The dynamics of the deformed two-fluid interface is further investigated using spectral analysis. Temporal and spatial spectrum distributions reveal a capillary wave range at small Weber and large Rayleigh numbers, and a secondary energy peak at smaller Rayleigh numbers. Furthermore, the maxima of the space-time spectra lie in an intermediate dispersion regime, between the theoretical predictions for capillary and gravity-capillary waves, showing that the gravitational energy of the interfacial waves is strongly altered by temperature gradients.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] PLANFORM STRUCTURE OF TURBULENT RAYLEIGH-BENARD CONVECTION
    THEERTHAN, SA
    ARAKERI, JH
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1994, 21 (04) : 561 - 572
  • [32] Turbulent thermal superstructures in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Blass, Alexander
    Zhu, Xiaojue
    Verzicco, Roberto
    Lohse, Detlef
    PHYSICAL REVIEW FLUIDS, 2018, 3 (04):
  • [33] Turbulent Rayleigh-Benard convection in an annular cell
    Zhu, Xu
    Jiang, Lin-Feng
    Zhou, Quan
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2019, 869
  • [34] Numerical simulation of turbulent Rayleigh-Benard convection
    Yang, HX
    Zhu, ZJ
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (02) : 184 - 190
  • [35] Numerical simulation of turbulent Rayleigh-Benard convection
    Palymskiy, Igor
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2012, 12 (04): : 243 - 250
  • [36] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [37] Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Benard convection
    Huang Mao-Jing
    Bao Yun
    ACTA PHYSICA SINICA, 2016, 65 (20)
  • [38] Boundary layer structure in turbulent Rayleigh-Benard convection in a slim box
    Zou, Hong-Yue
    Zhou, Wen-Feng
    Chen, Xi
    Bao, Yun
    Chen, Jun
    She, Zhen-Su
    ACTA MECHANICA SINICA, 2019, 35 (04) : 713 - 728
  • [39] Large scale structures in Rayleigh-Benard convection at high Rayleigh numbers
    Hartlep, T
    Tilgner, A
    Busse, FH
    PHYSICAL REVIEW LETTERS, 2003, 91 (06)
  • [40] Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-Benard Convection
    Zhou, Quan
    Xia, Ke-Qing
    PHYSICAL REVIEW LETTERS, 2010, 104 (10)