Multi-symplectic scheme and norm conserving law of generalized nonlinear schrödinger equation

被引:0
|
作者
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China [1 ]
机构
来源
Jisuan Wuli | 2009年 / 5卷 / 693-698期
关键词
Nonlinear equations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:693 / 698
相关论文
共 50 条
  • [21] Multi-symplectic method for generalized Boussinesq equation
    Wei-peng Hu
    Zi-chen Deng
    Applied Mathematics and Mechanics, 2008, 29 : 927 - 932
  • [22] Multi-symplectic method for generalized Boussinesq equation
    Hu Wei-peng
    Deng Zi-chen
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (07) : 927 - 932
  • [23] A New Multi-Symplectic Scheme for the KdV Equation
    Lv Zhong-Quan
    Xue Mei
    Wang Yu-Shun
    CHINESE PHYSICS LETTERS, 2011, 28 (06)
  • [24] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [25] A FINITE DIFFERENCE SCHEME FOR THE GENERALIZED NONLINEAR SCHRDINGER EQUATION WITH VARIABLE COEFFICIENTS
    Wei-zhong Dai
    Raja Nassar (Mathematics and Statistics
    JournalofComputationalMathematics, 2000, (02) : 123 - 132
  • [26] On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder
    E. Gerlach
    J. Meichsner
    C. Skokos
    The European Physical Journal Special Topics, 2016, 225 : 1103 - 1114
  • [27] Nonlinear smoothing for the periodic generalized nonlinear Schr?dinger equation
    McConnell, Ryan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 353 - 379
  • [28] On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation
    Luccas Campos
    Mykael Cardoso
    Journal of Dynamics and Differential Equations, 2022, 34 : 2347 - 2369
  • [29] SEMICLASSICAL LIMIT TO THE GENERALIZED NONLINEAR SCHR?DINGER EQUATION
    Boling Guo
    Guoquan Qin
    AnnalsofAppliedMathematics, 2018, 34 (03) : 221 - 243
  • [30] Degenerate solitons in a generalized nonlinear Schrödinger equation
    Wang, Meng
    Yang, Yan-Fei
    NONLINEAR DYNAMICS, 2024, 112 (05) : 3763 - 3769