Multi-symplectic scheme and norm conserving law of generalized nonlinear schrödinger equation

被引:0
|
作者
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China [1 ]
机构
来源
Jisuan Wuli | 2009年 / 5卷 / 693-698期
关键词
Nonlinear equations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:693 / 698
相关论文
共 50 条
  • [11] Multi-symplectic method for the coupled Schrdinger–KdV equations
    张弘
    宋松和
    周炜恩
    陈绪栋
    Chinese Physics B, 2014, 23 (08) : 230 - 236
  • [12] New explicit multi-symplectic scheme for nonlinear wave equation
    Hao-chen Li
    Jian-qiang Sun
    Meng-zhao Qin
    Applied Mathematics and Mechanics, 2014, 35 : 369 - 380
  • [13] New explicit multi-symplectic scheme for nonlinear wave equation
    李昊辰
    孙建强
    秦孟兆
    AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (03) : 369 - 380
  • [14] A NEW MULTI-SYMPLECTIC SCHEME FOR NONLINEAR“GOOD”BOUSSINESQ EQUATION
    Lang-yang Huang Wen-ping Zeng (Department of Mathematics
    JournalofComputationalMathematics, 2003, (06) : 703 - 714
  • [15] The complex multi-symplectic scheme for the generalized sinh-Gordon equation
    WeiPeng Hu
    ZiChen Deng
    SongMei Han
    Wei Fan
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 1618 - 1623
  • [16] A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation
    Li, Haochen
    Sun, Jianqiang
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (09) : 1956 - 1965
  • [17] The complex multi-symplectic scheme for the generalized sinh-Gordon equation
    Hu WeiPeng
    Deng ZiChen
    Han SongMei
    Fan Wei
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (10): : 1618 - 1623
  • [18] Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1095 - 1106
  • [19] Multi-symplectic method for generalized Boussinesq equation
    胡伟鹏
    邓子辰
    Applied Mathematics and Mechanics(English Edition), 2008, (07) : 927 - 932
  • [20] A note on the symplectic integration of the nonlinear Schrödinger equation
    Heitzinger C.
    Ringhofer C.
    Journal of Computational Electronics, 2004, 3 (1) : 33 - 44