Port-hamiltonian model of two-dimensional shallow water equations in moving containers

被引:0
|
作者
Cardoso-Ribeiro F.L. [1 ]
Matignon D. [2 ]
Pommier-Budinger V. [2 ]
机构
[1] Instituto Tecnológico de Aeronáutica, São José dos Campos
[2] ISAE-SUPAERO, Université de Toulouse, Toulouse
关键词
Moving containers; Port-hamiltonian systems; Shallow water equations; Sloshing;
D O I
10.1093/IMAMCI/DNAA016
中图分类号
O172 [微积分];
学科分类号
摘要
The free surface motion in moving containers is an important physical phenomenon for many engineering applications. One way to model the free surface motion is by employing shallow water equations (SWEs). The port-Hamiltonian systems formulation is a powerful tool that can be used for modeling complex systems in a modular way. In this work, we extend previous work on SWEs using the port-Hamiltonian formulation, by considering the two-dimensional equations under rigid body motions. The resulting equations consist of a mixed-port-Hamiltonian system, with finite and infinite-dimensional energy variables and ports. © The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
引用
收藏
页码:1348 / 1366
页数:18
相关论文
共 50 条
  • [21] Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian
    Haine, Ghislain
    Matignon, Denis
    Monteghetti, Florian
    IFAC PAPERSONLINE, 2022, 55 (30): : 424 - 429
  • [22] A Scalable port-Hamiltonian Model for Incompressible Fluids in Irregular Geometries
    Mora, Luis A.
    Ramirez, Hector
    Yuz, Juan, I
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2019, 52 (02): : 102 - 107
  • [23] On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems
    Schoeberl, Markus
    Siuka, Andreas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) : 1823 - 1828
  • [24] Representing the dissipation of infinite-dimensional linear port-Hamiltonian systems
    Philipp, Friedrich M.
    IFAC PAPERSONLINE, 2024, 58 (06): : 304 - 308
  • [25] MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB
    Moser, Tim
    Durmann, Julius
    Bonauer, Maximilian
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (06) : 476 - 489
  • [26] Port-Hamiltonian model for DC-microgrid lift systems
    Pham, T. Hung
    Prodan, I.
    Genon-Catalot, D.
    Lefevre, L.
    IFAC PAPERSONLINE, 2015, 48 (13): : 117 - 122
  • [27] Two-dimensional scour simulations based on coupled model of shallow water equations and sediment transport on unstructured meshes
    Liu, X.
    Landry, B. J.
    Garcia, M. H.
    COASTAL ENGINEERING, 2008, 55 (10) : 800 - 810
  • [28] Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems
    Philipp, Friedrich
    Schaller, Manuel
    Faulwasser, Timm
    Maschke, Bernhard
    Worthmann, Karl
    IFAC PAPERSONLINE, 2021, 54 (19): : 155 - 160
  • [29] Feedforward control of a channel flow based on a discretized port-Hamiltonian model
    Kotyczka, Paul
    Blancato, Antonio
    IFAC PAPERSONLINE, 2015, 48 (13): : 194 - 199
  • [30] Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation
    Giftthaler, Markus
    Wolf, Thomas
    Panzer, Heiko K. F.
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (09) : 619 - 628