Identification of lifted models for general dual-rate sampled-data systems using N4SID algorithm

被引:0
作者
Qin, Pan [1 ]
Kanae, Shunshoku [1 ]
Yang, Zi-Jiang [1 ]
Wada, Kiyoshi [1 ]
机构
[1] Graduate School of Information Science and Electrical Engineering, Kyushu University, Nishi-Ku, Fukuoka, 819-0359
关键词
Causality constraints; Dual-rate sampled-data system; Lifted model; Lifting technique; N4SID algorithms;
D O I
10.1541/ieejeiss.128.788
中图分类号
学科分类号
摘要
In this paper, we consider the identification problem for a dual-rate system in which the input sampling period may differ from that of the output. Based on the lifting operators, a lifted system which is equivalent to the original dual-rate system can be derived so that a lifted state-space model can be obtained which maps the relations between the dual-rate input-output data. Then the Numerical Subspace State-Space IDentification (N4SID) algorithm is modified and used to identify the lifted state-space model for the first time in the literature, taking the causality constraints of the lifted system into account. Finally, numerical studies are included to show the excellent numerical performance of the proposed algorithm. © 2008 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:788 / 794+15
相关论文
共 14 条
[1]  
Chen T., Francis B., Optimal Sampled-data Control System, (1995)
[2]  
Araki M., Yamamoto K., Multivariable multirate sampled-data systems: State-space descritption, transfer characteristics, and nyquist criterion, IEEE Trans. Auto. control., AC-31, 2, pp. 145-168, (1986)
[3]  
Lu W.P., Fisher D.G., Output estimation with multirate sampling, Int. J. Contr., 48, 1, pp. 149-160, (1988)
[4]  
Lu W.P., Fisher D.G., Least-squares output estimation with multirate sampling, IEEE. Tran. Autom. Contr., 34, 7, pp. 669-673, (2001)
[5]  
Ding F., Chen T., Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 6, pp. 1179-1187, (2005)
[6]  
Overschee P.V., Moore B.D., N4SID: Subspace algorithms for the identification of combined deterministicstochastic system, Automatica, 30, 1, pp. 75-93, (1994)
[7]  
Khargonekar P.P., Poolla K., Tannenbaum A., Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Auto, control., AC-30, 11, pp. 1088-1096, (1985)
[8]  
Francis B., Georgiou T., Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Auto, control., 33, 9, pp. 820-832, (1988)
[9]  
Qiu L., Chen T., H<sub>2</sub>-optimal design of multirate sampled-data systems, IEEE Trans. Auto, control., 39, 12, pp. 2506-2511, (1994)
[10]  
Qiu L., Chen T., Multirate sampled-data sytems: All H<sub>∞</sub> suboptimal controllers and the minimum entropy controllers, IEEE Trans. Auto, control., 44, 3, pp. 537-550, (1999)