Unlocking multidirectional and broadband wind energy harvesting with triboelectric nanogenerator and vortex-induced vibration of sphere

被引:1
|
作者
Zhang, Lanbin [1 ,2 ]
He, Yixiang [3 ]
Meng, Bo [4 ]
Dai, Huliang [3 ]
Wang, Lin [3 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
[2] Int Joint Res Ctr Deep Earth Drilling & Resource D, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Aerosp Engn, Hubei Key Lab Engn Struct Anal & Safety Assessment, Wuhan 430074, Peoples R China
[4] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
wind energy harvesting; triboelectric nanogenerator; vortex-induced vibration (VIV); lock-in region; O327; DRIVEN; MODE;
D O I
10.1007/s10483-024-3185-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unique oscillating wind-driven triboelectric nanogenerator (OWTENG) based on the sphere's vortex-induced vibration (VIV) behavior is proposed in this study, which can harvest wind energy across a multitude of horizontal directions. With the Euler-Lagrange method, the coupled governing equations of the OWTENG are established and subsequently validated by experimental tests. The vibrational properties and output performance of the OWTENG for varying wind speeds are analyzed, demonstrating its effectiveness in capturing wind energy across a broad range of wind speeds (from 2.20 m/s to 8.84 m/s), and the OWTENG achieves its peak output power of 106.3 mu W at a wind speed of 5.72 m/s. Furthermore, the OWTENG maintains a steady output power across various wind directions within the speed range of 2.20 m/s to 7.63 m/s. Nevertheless, when the wind speed exceeds 7.63 m/s, the vibrational characteristics of the sphere shift based on the wind direction, leading to fluctuations in the OWTENG's output power. This research presents an innovative approach for designing vibrational triboelectric nanogenerators, offering valuable insights into harvesting wind energy from diverse directions and speeds.
引用
收藏
页码:1895 / 1912
页数:18
相关论文
共 50 条
  • [21] Arc-Shaped Triboelectric Nanogenerator for Wind Energy Harvesting
    Wang, Nan
    Huang, Hui
    Zhu, Wenxuan
    Zhao, Xue
    Yang, Ya
    ENERGY TECHNOLOGY, 2022, 10 (05)
  • [22] Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
    Seol, Myeong-Lok
    Woo, Jong-Ho
    Jeon, Seung-Bae
    Kim, Daewon
    Park, Sang-Jae
    Hur, Jae
    Choi, Yang-Kyu
    NANO ENERGY, 2015, 14 : 201 - 208
  • [23] A highly sensitive magnetic configuration-based triboelectric nanogenerator for multidirectional vibration energy harvesting and self-powered environmental monitoring
    Park, Minseok
    Cho, Sumin
    Yun, Yeongcheol
    La, Moonwoo
    Park, Sung Jea
    Choi, Dongwhi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 18262 - 18274
  • [24] Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting
    Wang, Qiman
    Li, Wenhao
    Wang, Kun
    Liao, Yitao
    Zheng, Junjie
    Zhou, Xiongtu
    Lin, Jianpu
    Zhang, Yongai
    Wu, Chaoxing
    NANOMATERIALS, 2022, 12 (22)
  • [25] Damping Structured Triboelectric Nanogenerator for Stay Cables Vibration Energy Graded Harvesting
    Meng, Lixia
    Zhang, Weiqi
    Wang, Shuo
    Zhang, Xiaosong
    Li, Hengyu
    Liu, Shiming
    Cheng, Xiaojun
    ENERGY TECHNOLOGY, 2024, 12 (07)
  • [26] Study of wind energy harvesting based on rolling bearing type triboelectric nanogenerator
    Yan, Jin
    Tang, Zhi
    Zhang, Cheng
    Long, Yanghui
    Li, Jiangfeng
    Sheng, Yuxuan
    ENERGY REPORTS, 2024, 12 : 3690 - 3699
  • [27] Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting
    Feng, Yange
    Zhang, Liqiang
    Zheng, Youbin
    Wang, Daoai
    Zhou, Feng
    Liu, Weimin
    NANO ENERGY, 2019, 55 : 260 - 268
  • [28] Nutshell Powder-Based Green Triboelectric Nanogenerator for Wind Energy Harvesting
    Zhang, Ruijuan
    Xia, Ruihuan
    Cao, Xia
    Wang, Ning
    ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
  • [29] Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: comprehensive parametric study and optimization
    Yang, Kai
    Su, Kewei
    Wang, Junlei
    Wang, Jinfeng
    Yin, Kai
    Litak, Grzegorz
    SMART MATERIALS AND STRUCTURES, 2020, 29 (07)
  • [30] Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping
    Qin, Weiyang
    Deng, Wangzheng
    Pan, Jianan
    Zhou, Zhiyong
    Du, Wenfeng
    Zhu, Pei
    ENERGY, 2019, 189