In Situ Fabrication of Hierarchically Branched TiO2 Nanostructures: Enhanced Performance in Photocatalytic H2 Evolution and Li-Ion Batteries

被引:0
作者
Yang, Guorui [1 ,2 ]
Wang, Ling [1 ]
Peng, Shengjie [2 ,3 ]
Wang, Jianan [1 ]
Ji, Dongxiao [2 ]
Yan, Wei [1 ]
Ramakrishna, Seeram [2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117574, Singapore
[3] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Mat & Technol Energy Convers, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
branched; electrospinning; H-2; in situ growth; Li-ion batteries; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; NANOFIBERS; ELECTRODES; ARRAYS; INTERCALATION; PHOTOCURRENT; COMPOSITES; NANOTUBES; NANOWIRES;
D O I
10.1002/smll.201702449
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
1D branched TiO2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g(-1) h(-1)), in comparison to the conventional TiO2 nanofibers (0.11 mmol g(-1) h(-1)) and P25 (0.082 mmol g(-1) h(-1)). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g(-1), roughly two times higher than that of the pristine TiO2 nanofibers.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires [J].
Archana, P. S. ;
Jose, R. ;
Vijila, C. ;
Ramakrishna, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (52) :21538-21542
[2]   A facile approach for high surface area electrospun TiO2 nanostructures for photovoltaic and photocatalytic applications [J].
Arun, T. A. ;
Madhavan, Asha Anish ;
Chacko, Daya K. ;
Anjusree, G. S. ;
Deepak, T. G. ;
Thomas, Sara ;
Nair, Shantikumar V. ;
Nair, A. Sreekumaran .
DALTON TRANSACTIONS, 2014, 43 (12) :4830-4837
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   Facile synthesis of Ni-doped TiO2 ultrathin nanobelt arrays with enhanced photocatalytic performance [J].
Bai, Jun-Qiang ;
Wen, Wei ;
Wu, Jin-Ming .
CRYSTENGCOMM, 2016, 18 (10) :1847-1853
[5]   Potential applications of hierarchical branching nanowires in solar energy conversion [J].
Bierman, Matthew J. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (10) :1050-1059
[6]   Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage [J].
Cai, Yi ;
Wang, Hong-En ;
Zhao, Xu ;
Huang, Fei ;
Wang, Chao ;
Deng, Zhao ;
Li, Yu ;
Cao, Guozhong ;
Su, Bao-Lian .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) :10652-10663
[7]   A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity [J].
Cao, Tieping ;
Li, Yuejun ;
Wang, Changhua ;
Shao, Changlu ;
Liu, Yichun .
LANGMUIR, 2011, 27 (06) :2946-2952
[8]   Branched nanowires: Synthesis and energy applications [J].
Cheng, Chuanwei ;
Fan, Hong Jin .
NANO TODAY, 2012, 7 (04) :327-343
[9]   TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage [J].
Gao, Xuehui ;
Li, Gaoran ;
Xu, Yangyang ;
Hong, Zhanglian ;
Liang, Chengdu ;
Lin, Zhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) :14331-14335
[10]   One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting [J].
Ge, Mingzheng ;
Li, Qingsong ;
Cao, Chunyan ;
Huang, Jianying ;
Li, Shuhui ;
Zhang, Songnan ;
Chen, Zhong ;
Zhang, Keqin ;
Al-Deyab, Salem S. ;
Lai, Yuekun .
ADVANCED SCIENCE, 2017, 4 (01)