Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze-Thaw Cycles

被引:0
|
作者
Wang, Rongchang [1 ]
Yang, Zhongnian [1 ]
Ling, Xianzhang [1 ,2 ]
Shi, Wei [1 ]
Sun, Zhenxing [1 ]
Qin, Xipeng [2 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266520, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150006, Peoples R China
基金
中国国家自然科学基金;
关键词
freeze-thaw cycle; rubber fiber; expansive soil; elastic modulus; damage constitutive model; MECHANICAL-PROPERTIES; SHEAR-STRENGTH; TIRE RUBBER; COMPRESSIVE STRENGTH; SWELLING BEHAVIOR; CLAYEY SOILS;
D O I
10.3390/ma17204979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To elucidate the degradation mechanism of expansive soil-rubber fiber (ESR) under freeze-thaw cycles, freeze-thaw cycle tests and consolidated undrained tests were conducted on the saturated ESR. The study quantified the elastic modulus and damage variables of ESR under different numbers of freeze-thaw cycles and confining pressure, and proposed a damage constitutive model for ESR. The primary findings indicate that: (1) The effective stress paths of ESR exhibit similarity across different numbers of freeze-thaw cycles, the critical stress ratio slightly decreased by 8.8%, while the normalized elastic modulus experienced a significant reduction, dropping to 42.1%. (2) When considering the damage threshold, the shear process of ESR can be divided into three stages: weak damage, damage development, and failure. As strain increases, the microdefects of ESR gradually develop, penetrating macroscopic cracks and converging to form the main rupture surface. Eventually, the damage value reaches 1. (3) Due to the effect of freeze-thaw cycles, initial damage exists for ESR, which is positively correlated with the number of freeze-thaw cycles. The rubber fibers act as tensile elements, and the ESR damage evolution curves intersect one after another, showing obvious plastic characteristics in the late stage of shear. (4) Confining pressure plays a role in limiting the development of ESR microcracks. The damage deterioration of ESR decreases with an increase in confining pressure, leading to an increase in ESR strength. (5) Through a comparison of the test curve and the theoretical curve, this study validates the rationality of the damage constitutive model of ESR under established freeze-thaw cycles. Furthermore, it accurately describes the nonlinear impact of freeze-thaw cycles and confining pressure on the ESR total damage.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Effect of Freeze-Thaw Cycles on the Microstructure Characteristics of Unsaturated Expansive Soil
    Li, Xinyu
    Cong, Shengyi
    Tang, Liang
    Ling, Xianzhang
    SUSTAINABILITY, 2025, 17 (02)
  • [32] Evolution of mechanical behaviours of an expansive soil during drying-wetting, freeze-thaw, and drying-wetting-freeze-thaw cycles
    Zhao, Gui-tao
    Han, Zhong
    Zou, Wei-lie
    Wang, Xie-qun
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2021, 80 (10) : 8109 - 8121
  • [33] Effect of Dry-Wet Cycles and Freeze-Thaw Cycles on the Antierosion Ability of Fiber-Reinforced Loess
    Yan, Changgen
    An, Ning
    Wang, Yachong
    Sun, Weifeng
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [34] Constitutive model for damage of freeze-thaw rock under three-dimensional stress
    Zhang H.-M.
    Xie X.-M.
    Peng C.
    Yang G.-S.
    Ye W.-J.
    Sheng Y.-J.
    1600, Chinese Society of Civil Engineering (39): : 1444 - 1452
  • [35] Material Properties of Synthetic Fiber-Reinforced Concrete under Freeze-Thaw Conditions
    Al Rikabi, Fouad T.
    Sargand, Shad M.
    Khoury, Issam
    Hussein, Husam H.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (06)
  • [36] Performance Degradation of Fiber-Reinforced Concrete under Freeze-Thaw Cycles and Its Resistance to Chloride Ion Penetration
    Li, Jiangchuan
    Chang, Jun
    Qiao, Hongxia
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (08)
  • [37] Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack
    Xia, Dongtao
    Yu, Shiting
    Yu, Jiali
    Feng, Chenlu
    Li, Biao
    Zheng, Zhi
    Wu, Hao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [38] Mechanical properties and damage model of modified recycled concrete under freeze-thaw cycles
    Wang, Yonggui
    Xie, Meng
    Zhang, Juan
    JOURNAL OF BUILDING ENGINEERING, 2023, 78
  • [39] Study of a strength prediction model of unsaturated compacted expansive soil under freeze–thaw cycles
    Zhongnian Yang
    Qi Zhang
    Wei Shi
    Zhaochi Lu
    Zhibin Tu
    Xianzhang Ling
    Arabian Journal of Geosciences, 2022, 15 (2)
  • [40] Damage constitutive model of single flaw sandstone under freeze-thaw and load
    Lu, Yani
    Li, Xinping
    Chan, Andrew
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 159 : 20 - 28