Toward Better Low-Rate Deep Learning-Based CSI Feedback: A Test Channel-Based Approach

被引:1
|
作者
Liang, Xin [1 ]
Jia, Zhuqing [1 ]
Gu, Xinyu [1 ]
Zhang, Lin [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Beijing Big Data Ctr, Beijing Municipal Bur Econ & Informat Technol, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantization (signal); Training; Downlink; Wireless communication; Rate-distortion; Precoding; Neural networks; Massive MIMO; CSI feedback; deep learning; quantization; rate distortion theory; MASSIVE MIMO; QUANTIZATION; ALGORITHM; NETWORKS; MODEL;
D O I
10.1109/TWC.2024.3354238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL)-based channel state information (CSI) feedback provides satisfactory reconstruction accuracy of downlink CSI for the base station in massive multiple-input multiple-output (MIMO) systems. Although the introduction of codeword quantization improves the efficiency and feasibility of DL-based CSI feedback networks, the gradient problem caused by quantizers in the training stage compromises the performance of neural networks. In this paper, by considering the test channel as an equivalent of ideal rate-distortion quantization in a mutual information sense, we propose a test channel-based quantization module (TCQM) for DL-based CSI feedback networks which mitigates the gradient problem in the end-to-end training of CSI feedback networks. Moreover, the training of the CSI feedback network with TCQM is not dependent on the design of practical quantizer in the inference stage, which reduces the complexity of the training and design constraints of the CSI feedback system. Finally, for the setting of fixed feedback overhead, based on the idea of TCQM, we propose an adaptive training strategy for CSI feedback networks to evaluate the proper combination of codeword length and quantization rate of codeword elements to achieve the optimal reconstruction accuracy. Experiment results show that the proposed schemes outperform existing codeword quantization schemes in the literature.
引用
收藏
页码:8773 / 8786
页数:14
相关论文
共 50 条
  • [21] Machine Learning-Based CSI Feedback With Variable Length in FDD Massive MIMO
    Nerini, Matteo
    Rizzello, Valentina
    Joham, Michael
    Utschick, Wolfgang
    Clerckx, Bruno
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (05) : 2886 - 2900
  • [22] Multi-Task Learning-Based CSI Feedback Design in Multiple Scenarios
    Li, Xiangyi
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    Wang, Xiaoyun
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 7039 - 7055
  • [23] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [24] Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback
    Liu, Zhenyu
    Zhang, Lin
    Ding, Zhi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) : 889 - 892
  • [25] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [26] Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems
    Zhang, Xudong
    Wang, Jintao
    Lu, Zhilin
    Zhang, Hengyu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (03) : 557 - 561
  • [27] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)
  • [28] Sparsity Learning-Based CSI Feedback for FDD Massive MIMO Systems
    Zeng, Wenbo
    He, Yigang
    Li, Bing
    Wang, Shudong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 585 - 588
  • [29] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [30] Exploiting Partial FDD Reciprocity for Beam-Based Pilot Precoding and CSI Feedback in Deep Learning
    Lin, Yu-Chien
    Lee, Ta-Sung
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (02) : 1474 - 1488